

The importance of macroeconomic assessment for energy transition

8th European Energy Forum Conseil Français de l'Energie, Paris, June 11th, 2019

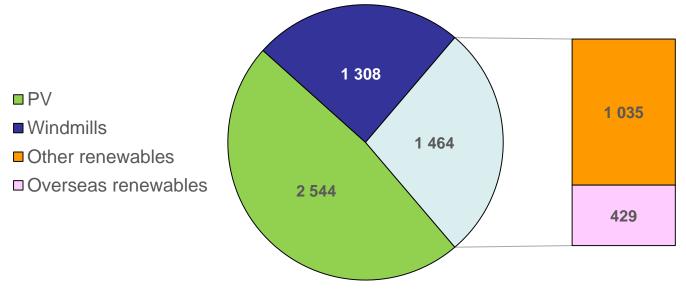
Richard Lavergne Ingénieur général des mines

- Why macroeconomic assessment?
- The CGE project
- Main results
- Conclusion

Innovation for energy transition is financially risky on the short term - The case of the solar road (Wattway)

Opened on December 22nd, 2016, in Tourouvre-au-Perche (Normandie)

- Built by Colas, 1 km, PV panels
- 5 M€ subsidies (> 3 500 €/MWh)
- Production weaker than expected, noisy, currently under repair, …



Public expenses for energy transition

About 5 300 M€ : 2019 cost for French public service for electric renewables in France (CRE projection)

- and more than 10 G€ in 2023 (according to PPE 2019)
- 2/3 of projected public energy service costs as defined by CRE (social expenses, tariff equalization, support to renewables and CHP, ...)

Source: CRE

Definition of macroeconomic assessment

- The purpose of macroeconomics is to study the <u>global dimensions</u> of an economy: production (GDP), investment, consumption, unemployment rate, inflation, ..., GHG emissions, ...
 - Some dimensions are not easy to quantify (happiness, social cohesion, ...)
 - Some other are difficult to project (e.g. net jobs creation)
- Macroeconomic assessment of a dedicated policy aims to measure the impact of this policy on such global dimensions

How can we make a macroeconomic assessment?

- Various sophisticated models may be used to make a macroeconomic assessment of national energy policies …
 - Three-ME (ADEME-OFCE)
 - NEMESIS (Seuréco-ERASME, Ecole Centrale de Paris)
 - MESANGE (MEF-DG Trésor)
 - GEM-E3 (NTUA, Athens)
 - IMACLIM (CIRED), etc.

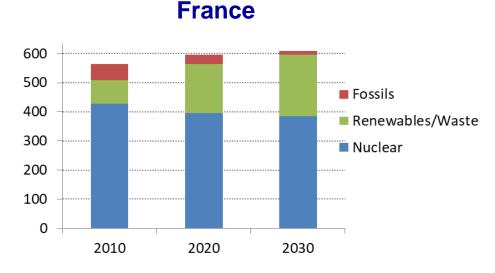
… even if their results are not convergent and comparisons are difficult

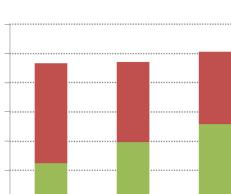
- More academic research is needed
 - See for instance "Phillips curves" vs. "Wage setting" debate
- They are relying on different set of assumptions and different reference scenarios
- Results and comparisons between scenarios on jobs creation, GDP growth, etc. have to be taken with caution

CGE Project

CGE decided in 2017 to assess the impact of the French energy transition

- Assessment focused on electricity
- Time horizon is 2030
- Focus on 3 dimensions:
 - · CO2 emissions from the electricity sector
 - Power generation total cost (CAPEX, OPEX, incl. dismantling)
 - Foreign trade balance
- Opendata from RTE for 2013-2016 (half-hourly power generation and consumption data, market prices, external trade of electricity, load factors,...)
- Optimization module in Excel -> robust but limited to orders of magnitude
- Reference energy scenario: EU reference energy scenario for France as published by the EU-Commission in 2016 (based on NTUA-Primes model)


Main assumptions


- The safety of nuclear installations in France is properly verified by ASN
- US dollar = 0.9 €, coal price 77 \$/t, oil 52 \$/bl, gas 3.1 \$/MBtu, EU-ETS 5 €/tCO2

EU Reference energy scenario (2016)

- Projection of trends up to 2050 assuming that policies adopted until end of 2014 are implemented (i.e. prior to the Paris Agreement and TECV law)
- Projection to inform about the effects of current policies not a forecast!
- Consistent projections by Member-State and for the EU as a whole of interactions between the economy, energy, emissions and transport
- Evolution of power generation (in TWh):

2020

2030

EU-28

4 0 0 0

3 500

3 0 0 0

2 5 0 0

2 0 0 0

1 500

1 0 0 0

500

0

2010

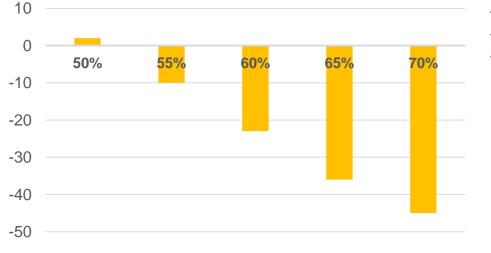
CGE modelling main simulations

♦ 6 x 3 = 18 scenarios have been tested

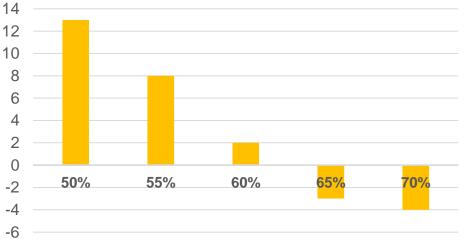
	Electricity consumption 2030 / 2015		
Electricity mix in 2030	-5%	0%	+5%
50% nuc, 40% ren, 10% therm		TECV law	
55% nuc, 35% ren, 10% therm			
60% nuc, 30% ren, 10% therm			
63% nuc, 31% ren, 6% therm			
65% nuc, 25% ren, 10% therm			
70% nuc, 25% ren, 5% therm			

Sensitivity analysis were conducted on EU-ETS and fossil fuel prices

Examples of results (1/2)


Additional levelised COST over 2015-2030 according to the share of nuclear in the 2025 French electricity mix

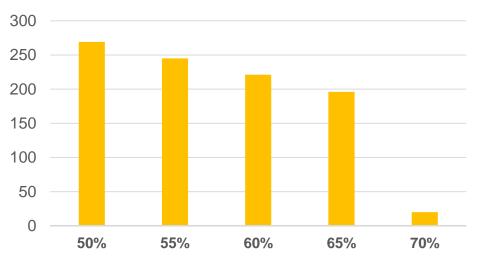
Compared to the reference scenario and with 0% growth assumption for the electricity demand


Deterioration of the levelised TRADE BALANCE according to the share of nuclear in the 2025 French electricity mix

Compared to the reference scenario and with 0% growth assumption for the electricity demand

Total deterioration over 2017-2030 (G€)

Total overcost over 2017-2030 (G€)

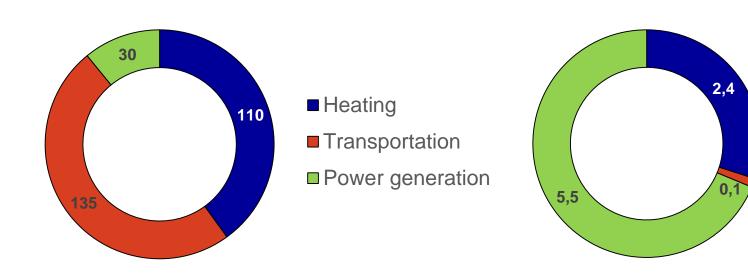


Examples of results (2/2)

Increase of CO2 EMISSIONS according to the share of nuclear in the 2025 French electricity mix

 Compared to the reference scenario and with 0% growth assumption for the electricity demand

Total excess over 2017-2030 (MtCO2)



Further analysis: from the electricity transition to the energy transition

- Priority could be granted to some key sectors and actions in order to:
 - Maximize CO2 reduction with a limited public spending
 - Limit external trade deficit

Emissions (MtCO2)

Comparison between emissions and actions on 3 sectors:

Source: CGE calculations (order of magnitude)

Public support (G€)

Main conclusions (1/2)

 Without countermeasures, the increase of the share of renewables to 40% in the French electricity mix by 2030 could lead to:

- A significant reduction in the nuclear fleet (because electricity demand is flat)
- An increase of gas consumption to accompany renewables entry

As a consequence:

- CO2 emissions of the electricity sector could be up to 160% per kWh by 2030
- Total cost of power generation could be up to 50% in €/MWh by 2030
- The external trade balance could deteriorate of €13 billion in cumulative additional deficit over 2017-2030

Socio-economic impact (jobs, GDP) should be modelled accordingly

Not assessed in the CGE study

Main conclusions (2/2)

Which evolutions for the French electricity mix?

- Thanks to nuclear and hydro, French power generation is already 90% carbon-free
- The current electricity mix is reliable and relatively cheap
- Life extension of existing nuclear plants, provided ASN approval
- This is in agreement with the new PPE (currently under discussion)

Priorities to decarbonise the French economy should go to:

- Research and innovation + industrialisation in clean energy
- Carbon footprint (supply chain incl.)
- Dwelling, transportation and agriculture

Thanks for your attention !

More details in an article of Annales des mines, R&E, January 2019 (N. Govillot, R. Lavergne, F. Valérian): <u>http://www.annales.org/re/2019/resumes/janvier/03-re-resum-FR-</u> AN-janvier-2019.html#03FR

richard.lavergne@finances.gouv.fr

Twitter (perso) @mouchezlim

