

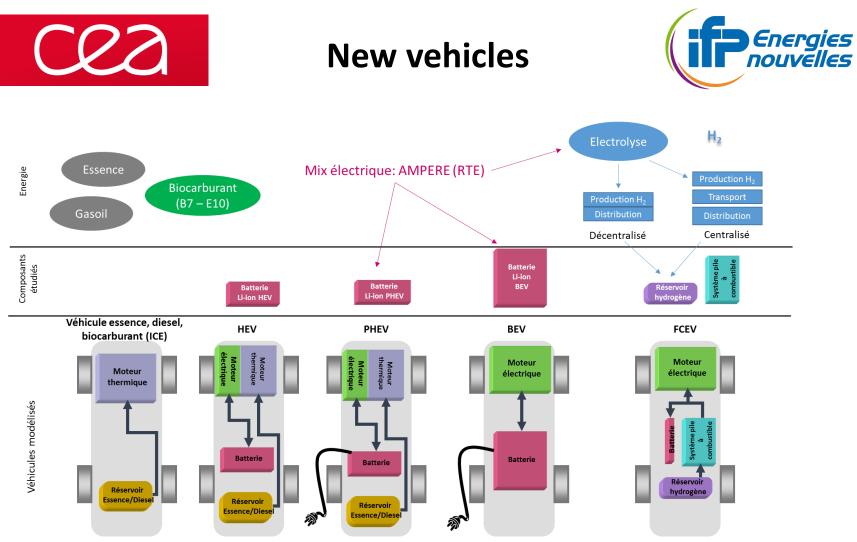
The costs of the transition to low-carbon mobility in France

Jean-Guy Devezeaux de Lavergne CEA/I-tésé François Kalaydjian IFPEN

The results presented here come from the study « Décarbonation du parc automobile français à horizon 2040 » realized by the CEA and IFPEN for the Office OPECST of the French Parliament

Project leaders: Elisabeth Le Net (CEA) et Cyprien Ternel (IFPEN) Other contributors: Jean-Guy Devezeaux de Lavergne (CEA), François Kalaydjian (IFPEN), Elvire Leblanc (CEA), Alain Le Duigou (CEA), Florence Lefebvre-Joud (CEA), Brigitte Martin (IFPEN), Fabien Perdu (CEA), Thierry Priem (CEA), Gondia Seck (IFPEN)

Objectives



"In-depth and forward-looking study that would make possible to implement technological scenarios aimed **at achieving the target set for the 2040 deadline** (i.e stop sales of Personal Vehicles with greenhouse gas emissions)"

For doing that:

- Technological foresight Vehicle approach and components
- Main actors strategies (focus on batteries & fuel cells)
- Infrastructure for electric mobility and H2
- → State of the art on mobility, technology, changes in the electricity mix
- Three scenarios: Median, Pro-battery, Pro-H2

Technological vision (all other things being equal on mobility behavior)→ Evolution of vehicle prices + economic context (in particular fiscal) → Modeling (with Times) → fleets → Economic impacts

HEV: Hybrid Electric Vehicle PHEV: Plug-in Hybrid EV BEV: Battery only EV FCEV: H2 Fuel Cell EV

Three scenarios

Median

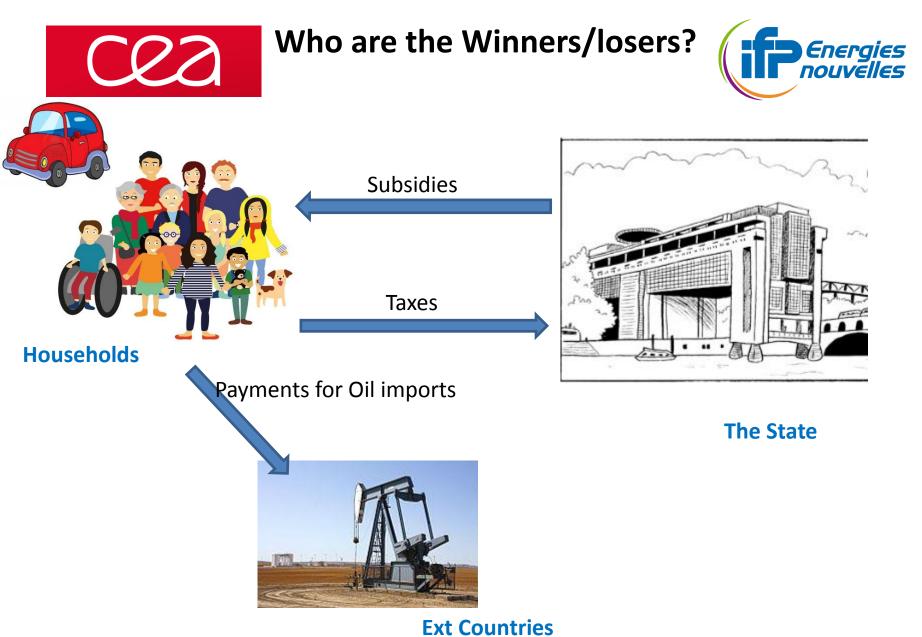
- AMPERE (RTE) electricity scenario (up to 2035)
- 46% nuclear / 50% ENR by 2035
- Reasonable R & D Progress on Batteries and Fuel Cells → Reduced Associated Costs
- Increase of the carbon tax → 100 € / t in 2030 and 141 € / t in 2040 →
 Continued increase in prices of thermal vehicles

Pro-batteries

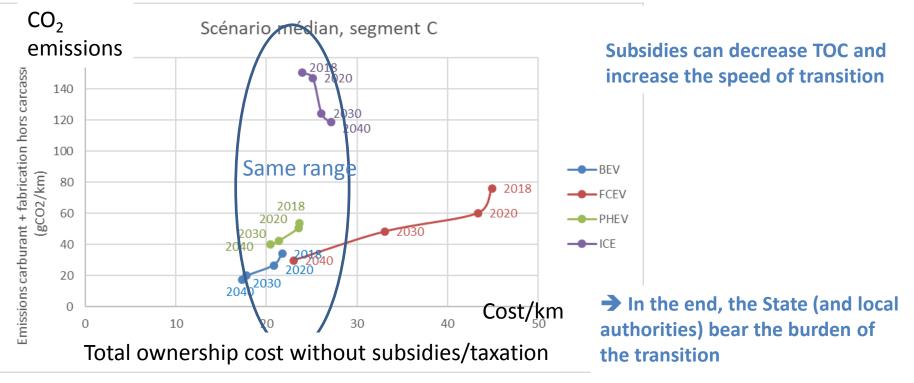
- Assumptions identical to the Median scenario
- Accelerated R & D on **batteries** \rightarrow 50% further cost reduction in 2030

Pro-hydrogen

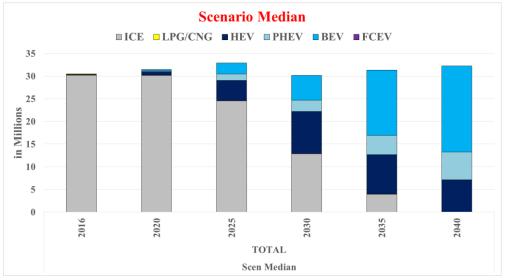
- Assumptions identical to the Median scenario except for the fuel cell price → 65% additional reduction in 2040 and H2 price → 40% additional reduction in 2040
- Greater purchase assistance for the FCEV

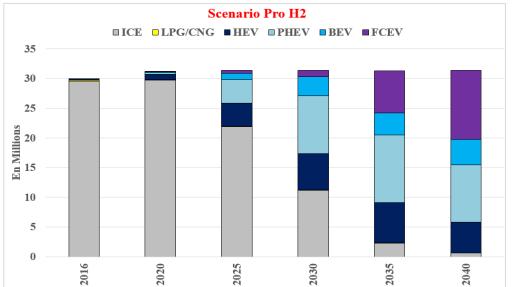


Main results



| PAGE 6


With the assumptions made, which are ambitious but realistic, the TOCs of the vehicles fall for the households \rightarrow the "social feasibility" will be facilitated

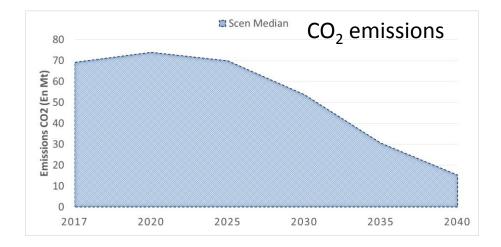


Résults: Vehicle fleet

- Progressive electrification of the French fleet HEV
- then BEV / PHEV from 2030
- No penetration of the H2 vehicle

• Development of H₂ Vehicles largely after 2030

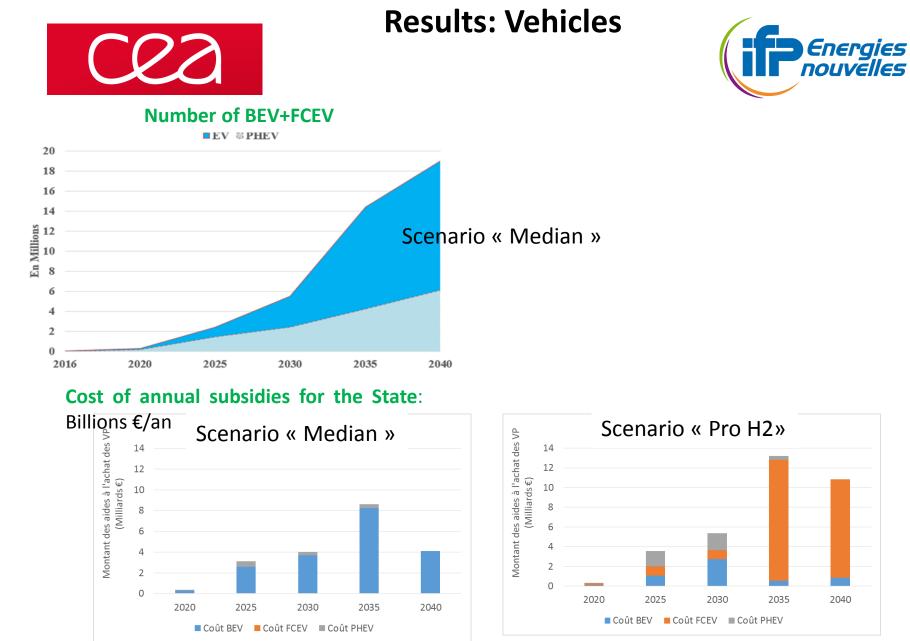
Benefits of the transition to low-carbon mobility in France



Several kinds of « benefits »

Main benefits:

- Impacts on CO₂ emissions
- Balance of trade


Other items:

- Pollution (NOx, SOx, particles...)
- Impacts on the French car industry and associated services

Costs of the transition to lowcarbon mobility in France

PAGE 12

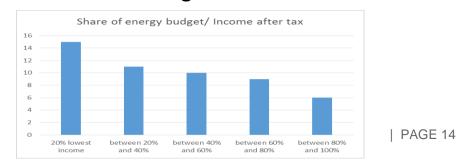
Results Cost of infrastructures

Expenditures (€B, cumulated over the period)		MEDIAN	PRO-BATT	PRO-H2
10 EV per electric charging point (1a)	Min unit price per e-charging point	30.7	32.8	25.7
10 EV per electric charging point (1b)	Max unit price per e-charging point		108.0	85.8
H_2 charging station (2)		0.0	0.0	14.6
Electricity production dedicated to an H2 mobility (3a)	Min (electrolysers capacity utilization rate)	0.0	0.0	1.7
Electricity production dedicated to an H2 mobility (3b)	Max (electrolysers capacity utilization rate from 30 to 70%)	0.0	0.0	3.5
Total (1a) + (2) + (3a)	Min	30.7	32.8	42.0
Total (1b) + (2) + (3b)	Max	100.6	108.0	103.9

► EV infrastructure costs amount to € 30 to 100B

- H2 charging stations (~40 % of the car fleet) cumulated cost that amount to € 15B for the decentralized dedicated H2 production (centralized units are not taken into account)
- The share of those investments between the State, the public local communities and the private actors is still to be defined
 PAGE 13

Results


Why a liquid fuel taxation ? Two main reasons:

- For the **efficiency of this mechanism** (liquid fuels demand is poorly sensitive to prices)
- For **internalizing the externalities** (social impact, traffic jams, climate issues) and financing the required road transport infrastructures.

Shares of households expenses in energy in income after tax				
Depending on income				
20% lowest income	15			
between 20% and 40%	11			
between 40% and 60%	10			
between 60% and 80%	9			
between 80% and 100%	6			
Depending of living places				
Country	12			
Small cities	10			
Medium cities	9			
Large Cities	9			
Paris Conurb.	6			

→ Setting a precise weight to these two components is a quite challenging issue

➔ Another issue is to adopt a fair tax regime as fuel taxes is clearly not a redistributive policy ; social movements occurring in France in winter 2019 are a clear sign of it.

Taxation regime : a key component of any mobility transition

Carbon tax in TIPCE €/tCO₂

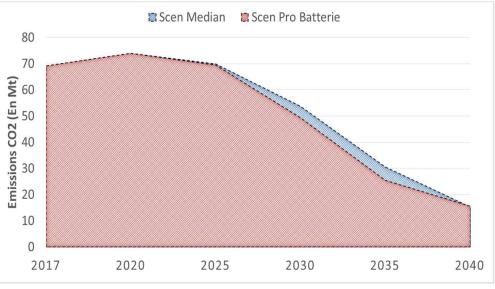
2017	2018	2019	2020	2021	2022
30,5	44,6	55	65,4	75,8	86,2

Before « freezing » the carbon tax

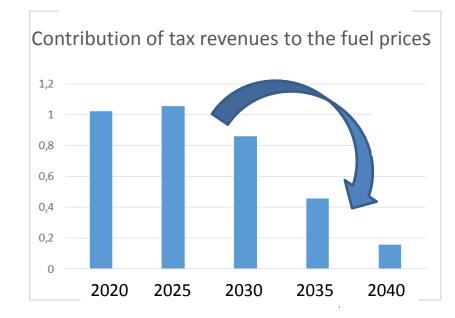
Carbon tax uses in France (2018)

Share of taxes in super gasoline

- transfer to local communities
- transfert to national body for energy transition
- transfert to agency of transpot infrastructure
- transfer to central budget



Taxation regime : a key component of any mobility transition



A growing carbon price in addition to other measures leads to discarding fossil fuels in totality by 2040; related taxes disappeared consequently.

Emissions calculated at the tailpipe

A € 20B by loss in 10 years !

Total costs

• For the households: total impact is neutral in average (but true questions remains about the burden sharing cities/rural territories)

• For the French State:

- Few billion / year for infrastructure
- € 20 to 30 B TIPCE less/year
- € 10 B/year amount of subsidy purchase (average value)

That is an amount of nearly € 40 B/year, even taking into account the additional VAT on electricity or hydrogen

• For the foreign countries/oil producers: a loss in the range of € 40 to 60 B/year, depending on international oil price.

Conclusions

- By 2040, with the assumptions of improving the costs and performance of engines, the deployment of low-carbon electric vehicles appears to be feasible. It begins with the HEV and continues with the BEV and PHEV / FCEV according to the scenarios envisaged
- ➤ The main benefits are highly significant in terms of both the drastic reduction of CO₂ emissions (~ 75% in 2040: 50 Mt / year compared to 2017) and balance of trade (~30 to 60 billion €/year depending on oil prices)

- The total cost for the Households + State is in the range of 500 Billions Euros of the period of time
 - A very important question is to drive the path of the impact for the households
- Government Revenues from liquid fuels will decrease very hardly after 2030 (not before):
 - We can prepare this new era
 - But the impacts will be large

Many Caveat apply, such as the need to use a macroeconomic model to obtain results taking account of technical, fiscal and trade effects together.