

www.paris-reinforce.eu

Delivering on the Paris Agreement in a fragmenting world

PARIS REINFORCE final event, Sorbonne, Paris, November 15, 2022

Bottlenecks to sectoral decarbonisation in Europe: national insights

Jakob Wachsmuth, Khaled Al-Dabbas, Andrea Herbst, Philine Warnke (*Fraunhofer ISI*)

- Techno-economic models commonly used to inform climate policy
- **High relevance** of model-based techno-economic scenarios is uncontested

- Limited coverage of **transitions beyond diffusion** of innovations
- **Depicting only parts** of the complex empirical reality of the manifestation of innovations
- Ineffective inclusion of policymakers in the heart of modelling activities

Co-Creating Transformative Policy Mixes

One objective within PARIS REINFORCE:

Extend quantitative techno-economic scenarios in line with the Paris targets to socio-technical narratives **based on innovation system analyses.**

Source: own representation of Fraunhofer ISI

The PARIS REINFORCE project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 820846.

Approach: Identify transition bottlenecks and co-create transformative policy mixes

- Bottlenecks are derived from tensions between modeled scenarios and present innovation trajectories.
- Scientists and stakeholders co-create narratives by describing transformative policy mix to overcome these over time

5 case studies

- Energy sector transformation in Greece
- Energy-intensive industries (steel, cement, chemicals) in Germany and the UK
- Transport sector in Brazil and Canada

Net-zero emissions in the industry sector requires profound change

**** * * ***

Characteristics of net-zero pathways for energy-intensive industries in Germany and the EU

		erence pathways for energy- ensive industries in the EU	Net	-zero pathways for energy-intensive industries in the EU
	•	Ambitious energy efficiency measures	•	Ambitious material efficiency + circular economy measures
Кеу	• Elec	Electricity for low-temperature heat	•	Electricity for low- and mid-temperature heat
characteristics	•	Fuel switch to biomass to a certain	•	Hydrogen + renewable gases as energy carriers and feedstocks
		extent	•	Carbon capture + storage (CCS) for unavoidable process emissions

Recent emission reductions in German industry very limited

- The CO₂ emission intensity of energy-intensive industries has been almost constant since 2010.
- Reduction of absolute CO₂ emissions have been driven mainly by reductions in economic output.

Source: ENERDATA based on official public statistics

Steel: Technology routes for decarbonisation

Recycling

 High-quality steel with increased scrap usage (TRL 4-9)

Hydrogen

- H₂-based direct reduction (TRL 6-8)
- H₂ plasma smelting reduction (TRL 5)

Electricity

- alkaline iron electrolysis (TRL 5-6)
- molten oxide electrolysis (TRL 2)

Carbon based

 Iron based smelting reduction (TRL 6) using "Substitution of fossil energy by biomass (TRL 2-7), carriers by Carbon oxide conversion (TRL 8)

Source: https://www.estep.eu/green-steel-for-europe/publications/

• Optimised BF using "Substitution of fossil energy by biomass (TRL 2-7), carriers by Carbon oxide conversion (TRL 8), gas injection into the blast furnace (TRL 8)

The German Low-Carbon Industry Transition from a Sectoral Innovation and System Failures Perspective

Conceptual approach to co-creating transformative policy mixes

Workshop Workshop **Pre-workshop** Workshop implementation preparation evaluation processes Model-based 1st block: bottlenecks **Workshop inputs Result: STEEP narrative** transformation pathways Tensions between model-Geographically and Comparison of **current** Where we are heading based pathways & current sectorally focused and desired ٠ trajectories: overview of modelled transformation pathway Paris-compatible pathways pathways (optional: social + political feasibility Social, technical, economic, several variants) Input on innovation ecological, political techno-economic feasibility **bottlenecks** along the way system, including an socio-ecological and socioindicative list of **Signposts for a** economic impacts **Innovation system analysis** potential bottlenecks transformative policy and policy mix delineation Input on present policy mix: how to 2nd block: transformative mix and its delineation Stage of transformation policy mix elements ... overcome bottlenecks Actor constellations and ٠ 1. Agree on a policy strategy ... destabilize nonpower structures sustainable practices Combine policy 2. **Stakeholder involvement** Infrastructures: physical, ٠ instruments ... foster the realization Stakeholder mapping knowledge, financial of sustainable pathways 3. Reflect on actor & Stakeholder selection Role of regulation and governance structure **Implications for imple**for workshop socio-cultural factors mentation of policy mix Wrap up: policy mix signposts

Source:

The PARIS REINFORCE project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 820846. Wachsmuth, J.; Jackwerth-Rice, T.; Seus, S.; Warnke, P. (2021): A Methodology for Co-Creating Transformative Policy Mixes as an Approach to Generalise Diffusion-Based Transition Pathways. Submitted to TFSC (based on full paper at the IST 2021 conference)

Transition bottlenecks for the German industry sector

Bottlenecks en	ergy-intensive industries in Germany
Social feasibility	 Fossil industry seen as guarantor for economic growth + labor Low acceptance of CCUS and no established framework yet
Political feasibility	 International and EU state aid regulations limit subsidies Strong networks btw. industry and policy makers Uncertainty political framework conditions Certification green steel/cement
Technological feasibility	 CCS + hydrogen technologies are not fully mature yet upscaling of technologies in an unprecedented way Potential lack of high-quality resources
Economic feasibility	 Price impacts and value chain disruptions due to Covid and Russia-related sanctions Investment cycle requiring invest in process not yet competitive No infrastructures for transport of hydrogen (H₂) + CO₂ No established markets for green H₂ + cement yet
Socio- economic impacts	 Uncertainty about CBAM impacts Price impacts for downstream industries Risk of carbon leakage and associated job losses
Socio-ecolo- gical impacts	• Land use conflicts related to infrastructure + RES expansion

Source: own representation based on Koasidis, K. et al. (2020b) and Wachsmuth, J.; Aydemir, A.; Döscher, H.; Eckstein, J.; Poganietz, W.-R.; François, D.-E. et al. (2021): The potential of hydrogen for decarbonising EU industry. Brussels: European Parliament.

Transition bottlenecks for the German industry sector

Bottlenecks en	ergy	<i>intensive industries in Germany</i>
Social	•	Fossil industry seen as guarantor for economic growth + labor
feasibility	•	Low acceptance of CCUS and no established framework yet
reasibility	•	Low acceptance of new infrastructures
	•	International and EU state aid regulations limit subsidies
Political	•	Strong networks btw. industry and policy makers
feasibility	•	Uncertainty political framework conditions
	•	Certification green steel/cement
Taskaslasiasl	•	CCS + hydrogen technologies are not fully mature yet
Technological	•	upscaling of technologies in an unprecedented way
feasibility	•	Potential lack of high-quality resources
	•	Price impacts and value chain disruptions due to Covid and Russia-related sanctions
Economic	•	Investment cycle requiring invest in process not yet competitive
feasibility	•	No infrastructures for transport of hydrogen (H ₂) + CO ₂
	•	No established markets for green H ₂ + cement yet
	•	Uncertainty w.r.t. availability of H ₂ + renewable electricity
	•	Uncertainty about CBAM impacts
Socio-	•	Price impacts for downstream industries
economic	•	Risk of carbon leakage and associated job losses
impacts	•	Customer-related barriers (norms, competences)
Socio-ecolo- gical impacts	•	Land use conflicts related to infrastructure + RES expansion

Source: own representation based on Koasidis, K. et al. (2020b) and Wachsmuth, J.; Aydemir, A.; Döscher, H.; Eckstein, J.; Poganietz, W.-R.; François, D.-E. et al. (2021): The potential of hydrogen for decarbonising EU industry. Brussels: European Parliament.

Narrative: How major bottlenecks to the industry decarbonisation in Germany will have been overcome

2020s

Demand for CO₂-neutral hydrogen increases substantially

- 2030: 68-144 TWh
- 2050: 825 1289 TWh

Hydrogen production increases the electricity demand by up to 1700 TWh, i.e. +200%

2040s

Sources: European Hydrogen Backbone (2022), A-Dabbas et al. (2022)

Narrative: How major bottlenecks to the industry decarbonisation in Germany will have been overcome

2020s

- Developing an overarching system development strategy
- Certification of green and blue H2 based on RED III and Gas Package
- Support schemes for infrastructure and electrolyser build up
- Carbon contracts for difference

The PARIS REINFORCE project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 820846.

2030s

- Green public procurement initiative in the building sector
- Establishing labels and green lead markets

Sources: European Hydrogen Backbone (2022), A-Dabbas et al. (2022)

Sectoral bottlenecks considered most relevant by stakeholders

Country	Sector	Bottlenecks considered most relevant by the stakeholders
Germany Energy-intensive industries		 (1) Infrastructure-related bottlenecks: Uncertainty around availability of hydrogen and renewable electricity & political framework conditions (2) Demand-side-related bottlenecks: Certification & markets for green steel/cement, customer related barriers (norms, competences)
UK	Energy-intensive industries	(1) Financing, investment cycles, and energy prices(2) Unprecedented upscaling of technologies and required skilling(3) Infrastructure expansion
Brazil	Transportation	(1) Issues around resistance of powerful actors(2) price of batteries, access to credits and(3) cost of mobility, Diesel sensitivity.
Canada	Transportation	 (1) uncertainties around CCS technologies (2) decarbonisation of freight transport (3) urban planning not suitable for mobility shift Crosscutting: governance issues resulting from multi-scalar structures
Greece	Electricity sector	 (1) High costs of grid adaption to RES requirements & Access to finance (2) Issues with RES (esp. wind power) expansion: opposition, ecosystem impact & land use constraints (3) Potential lock-in due to high investment into (L)NG infrastructure (4) Storage maturity

Source: Wachsmuth, J.; Warnke, P.; Gambhir, A.; Giarola, S.; Koasidis, K.; Nikas, A.; Pied, M.; Vaillancourt, K. (2022): D4.7 – Transformative Policy Mixes: Comparing National Case Studies. To be published on the PARIS REINFORCE website soon

Conclusions and outlook

Conclusions

- The workshops made clear that substantial **tensions** exist btw. modeled pathways and the real world \rightarrow Realisibility of the narratives remains open!
- Some challenges and solutions stand out in all **countries** in spite of the strong diversity of contexts:
 - Allocation of capital towards massive investments into low-carbon solutions
 - **Infrastructure development** for hydrogen, ٠ capture and use of CO₂ and electricity grids and storage adapted to renewable energy solutions
 - Stakeholder and citizen dialogues where ٠ agreement is reached on cornerstones of longterm decarbonisation trajectories
 - **Demand-side measures** complementing ٠ investments into low-carbon processes

Outlook

- In order to facilitate change in the respective countries, the narratives need to be validated, enriched and amended by the stakeholders themselves.
- This process reaches beyond • PARIS REINFORCE but can and should be initiated by the project partners in their respective countries or in further cooperations.

Thank you!

#parisreinforce

Jakob Wachsmuth Philine Warnke Khaled Al-Dabbas Andrea Herbst jakob.wachsmuth@isi.fraunhofer.de philine.warnke@isi.fraunhofer.de khaled.al-dabbas@isi.fraunhofer.de andrea.herbst@isi.fraunhofer.de

ParisReinforce

paris-reinforce

parisreinforce

Narrative: How major bottlenecks to the industry decarbonisation in Germany will have been overcome

	Relevant policy mix elements	
Social feasibility	• Inclusive policy making: processes that foster dialogue, new ways of interaction modes, societal experimentation	
Political	• Flexible governance: adaptive mechanisms that coordinate governments, market actors + civil society	
feasibility	• Systemic instruments: linking different stakeholders and activities of innovation systems	
Technological feasibility	• Technology push: Instrument that pay attention to innovativ technology options	
	• Demand pull: Mechanisms that stimulate the demand side (economic or regulatory)	
Economic feasibility	• Systemic instruments: mecha- nisms that foster provision of required infrastructures	
Socio- economic impacts	• Systemic instruments: mecha- nisms that tackle structural change, social inequalities and socio-ecological impacts	
Socio- ecological impacts	• Inclusive policy making: processes that foster partici- pation of 'dormant' stakeholder	

Source: Wachsmuth, J.; Warnke, P.; Gambhir, A.; Giarola, S.; Koasidis, K.; Nikas, A.; Pied, M.; Vaillancourt, K. (2022): D4.7 – Transformative Policy Mixes: Comparing National Case Studies. To be published on the PARIS REINFORCE website soon Narrative: How major bottlenecks to the industry decarbonisation in Germany will have been overcome

	Relevant policy mix elements	Elements of a transformative policy mix in addition to current policies	
Social feasibility	• Inclusive policy making: processes that foster dialogue, new ways of interaction modes, societal experimentation	 Visioning process on CCUS with broad societal participation Green building communication campaign 	
Political feasibility	 Flexible governance: adaptive mechanisms that coordinate governments, market actors + civil society Systemic instruments: linking different stakeholders and activities of innovation systems 	 Sites for testing innovative building solutions (Reallabore) High-level roundtable with NGOs, policy and industry Developing an overarching system development strategy 	
Technological feasibility	 Technology push: Instruments that pay attention to innovative technology options Demand pull: Mechanisms 	 Stronger R&D in recycling + alternative building materials Strengthening secondary steel route Carbon contracts for difference 	All of the second
Economic feasibility	 that stimulate the demand side (economic or regulatory) Systemic instruments: mecha- nisms that foster provision of required infrastructures 	Certification of groop and blue H2 based on RED III and Gas Package Support schemes for infrastructure and electrolyser build up	
Socio- economic impacts	• Systemic instruments: mechanisms that tackle structural change, social inequalities and socio-ecological impacts	 Establishing labels and green lead markets Green public procurement initiative in inclusion sector. 	Source: Wachsmuth, J.; Warnke, P.; Gambhir, A.; Giarola, S.; Koasidis, K.; Nikas, A.; Pied, M.; Vaillancourt, K. (2022): D4.7 – Transformative Policy Mixes: Comparing National Case Studies. To be published on the PARIS REINFORCE website
Socio- ecological impacts	 Inclusive policy making: processes that foster partici- pation of 'dormant' stakeholder 	 the building costor Strategy for improving decarbonisation skills + competences 	soon

First steps towards a hydrogen economy

Important Project of Common European

H₂-Startnetz 2030

- IPCEI Hydrogen is starting to pave the way for uptake of hydrogen supply + infrastructure, but delays in notification
- **Hydrogen valleys** for regional experimentation are established all over Europe
- ENTSO-G and German TSOs are pushing for a EU Hydrogen Backbone
- No comparable activities on CCUS yet!

isclaimer: Bei der Karte handelt es sich um eine schematische Darstellung, die hinsichtlich der eingezeichneten Speicher Id Abnehmer keinen Anspruch auf Vollständigkeit erhebt.

Sources: European Commission 2022; FNB Gas (2022), Clean Hydrogen Partnership (2022)

Bottom-up modelling of energy demand & GHG emissions

- High technology resolution
- Consideration of all important abatement options
- Energy and greenhouse gas balance
- Annual results
 until 2050

https://www.forecast-model.eu

Bottom-up modelling of energy demand & GHG emissions

FORECAST

and Simulation Tool

Overview of key scenario assumptions for EU industry

	WWH21	Focus electrification Focus hydrogen		
	Current Policy	NZE-Mix-Electric NZE-Mix-H2		
GHG reduction 2050	80% GHG reduction	At least 95% GHG reduction compared to 1990 for industry (in line with overall GHG neutrality)		
GHG reduction 2030	40% GHG reduction	Reduction in line with FF 55 meeting overall 55% GHG reduction target		
Economic growth	Continued long-term growth of industry GVA ~0.8%, recovery of Covid-crisis with higher growth before 2030			
Process switch	Diffusion of Best Available Technologies (BAT) with (8-9 TRL)	Diffusion of innovative technologies with Technology Readiness Level (TRL) above 4		
Energy and material efficiency and circular economy	Ambitious energy efficiency measure and continuation of current trends in recycling	Ambitious progress		
Fuel and feedstock switch	-	Priority electrification Priority hydrogen		
CCS and CCU	-	Included for cement and lime plants only		
	Low EU ETS prices in line with Ref2020	Higher CO_2 price for the EU ETS		
CO ₂ price	50€/tCO2-eq in 2030	110€/tCO ₂ -eq in 2030		
	200€/tCO2-eq in 2050 490€/tCO ₂ -eq in 2050			

Material efficiency reduces demand for energy-intensive products in the NZE scenarios but No Carbon Leakage

Due du et	WWH21			
Product	Current Policy			
Steel	More efficient steel use and substitution result in decreasing the production by about 9%			
Cement and lime	Efficient concrete use and substitution, concrete recycling and re-use result in 7% decrease in production. 20% decrease in the clinker share			
	Reduced demand for lime from blast furnace and power plants			
Chemicals	Plastics substitution, reduced fertilizer demand and more efficient material use.			
Glass	13% decrease in container glass as result to more efficient use			
Paper	Structural change: Reductions in graphic paper are overcompensated by packaging demands			

Assumptions on production outputs of selected basic materials

Diffusion of new low-CO₂ production Routes

Product	Focus-EL Focus H2			
Steel	100% H-DR share by 2050			
Cement and lime	Strong diffusion of CCS reaching ~80% of production capacity by 2050 Slow increase in low-carbon cements to ~15% market share by 2050 (new binders)			
Chemical feedstocks	100% Feedstock H2 for Methanol, ethylene, ammonia and other feedstocks			
Glass	70% Electric furnaces by Higher share of hybr 2050 furnaces			
Steam generation	Electric boilers and heat pumps, limited biomass	H2 boilers, hybrid boilers, electric heat pumps, limited biomass		

Industrial transformation requires high quantities of CO₂-neutral energy carriers

- Reduction in FED compared to 2015 (14% in CP and 24% in MIX95)
- The direct and indirect electrification of FED is a persisting trend in both scenarios:
 - 1519 TWh electricity demand in the NZE-Mix-Electric (DE: 278 TWh)
- 559 TWh Hydrogen demand in the NZE-Mix-H2 (DE: 210 TWh)
- In the WWH21 (CP) the demand for natural gas decreases significantly however, it remains a significant energy

Feedstock demand is strong driver for hydrogen

- Demand for CO₂-neutral hydrogen increases substantially
 - 2030: 68-144 TWh
 - 2050: 825 1289 TWh
- The primary sources of H₂ demand in NZE-Mix-Electric are feedstock use and steel manufacturing.
- NZE-Mix-H₂ extends H₂-demands in furnaces and steam generation

Electricity demand for H₂ generation needs to be considered

- In NZE-MIX-Electric process heating via steam generation and industrial furnaces increase electricity demand by 614 TWh -> + 50%
- Considering the Electricity equivalents needed for Hydrogen production increases the electricity demand in NZE-MIX-H2 by 1700 TWh, i.e. + 200% (DE: 690 TWh)

Transition bottlenecks for the UK industry sector

Investment cycles may require investments in processes... Skill and engineering requirements Upscaling of technologies in an unprecedented way High electricity prices CO2 infrastructure expansion and lead times Hydrogen infrastructure expansion and lead times Electricity infrastructure expansion Strong increase of gas and electricity prices Uncertainty about continued support by new government Limited availability of financing Uncertainty about hydrogen supply

Source: own representation by Fraunhofer ISI

Greek Power Sector: Market liberalization and RES uptake

Window of opportunity: Liberalisation of the market

	Second Period (2009-2017)		
		2009	2017
Lignite	This further decrease resulted from the increased penetration of RES and the high emissions prices. 8 lignite plants shut down and no new ones were constructed.	52%	Further reduced to 34%
Oil	This fall was led by the installation of RES power plants and the interconnection of some islands with the mainland grid. Moreover, the few oil plants operating in the mainland grid shut down.	16%	Further reduced to 10%
Hydro & RES	Hydro comprises 10% of Greece's electricity generation in 2017. The remaining 15% results from the significant increase of wind and solar power plants.	10%	Further increased 25%
Natural gas	More natural gas plants were constructed replacing the reduced lingite electricity production.	22%	Further Increased to 31%

PPC divided into various entities responsible for the production, transmission and distribution of electricity

Window of opportunity: Historically low RES electricity generation prices

Nowadays (not thoroughly examined in the MLP) 2017 2020 According to the NECP's target for complete Significantly delignitisation by 2028, many lignite plants have Lignite 34% decreased already been shut down with the rest being shut down to 12% by 2022, except the new Ptoleimada V plant that will be converted to a natural gas plant by 2028). almost steady at Still many islands are not interconnected Oil 10% 10%, with the mainland grid. slightly decreased Hydro comprises 7% of total energy generation. Significantly RES are accountable for 32% of electricity generation, Hydro 25% increased mainly due to the hisotrically low prices. Moreover, the & RES to 39% reduction of lignite usage is also contributing to the rise of RES energy generation. More natural gas plants were constructed Further Natural substituting for the reduced lingite electricity 31% increased gas production. to 39%

2020 NECP, aiming on total delignitisation by 2028

Source: Nikas et al. 2020

Employment effects of fossil and RES power generation

- Employment effects of natural gas are comparably low
- Power generation from lignite coal has high employment effects, in particular in the mining sector and during operation.
- Employment effects of wind and PV power generation can even be higher, but different skills are required.

Direct employment (Job- years/TWh)	Indirect employment (Job-years/TWh)	Induced employment (Job- years/TWh)	Total employment (Job- years/TWh)	Wind power plant	Dir (Jo yea TW
14.6	9.0	4 5	28.1	Power	
1 1.0		1.5	20.1	Plant	
				Constru	
119.5	39.3	84.8	243.6	ction	
				Operatio	
104.3	19.8	54.2	178.3	n	
238.4	68.1	143.5	450.0	Total	Ĩ
	employment (Job- years/TWh) 14.6 119.5 104.3	employment (Job- years/TWh)Indirect employment (Job-years/TWh)14.69.0119.539.3104.319.8	employment (Job- years/TWh)Indirect employment (Job-years/TWh)employment (Job- years/TWh)14.69.04.5119.539.384.8104.319.854.2	Indirect employment (Job- years/TWh)Indirect employment (Job- years/TWh)employment (Job- years/TWh)14.69.04.528.1119.539.384.8243.6104.319.854.2178.3	Indirect employment (Job- years/TWh)employment (Job- years/TWh)employment (Job- years/TWh)employment (Job- years/TWh)Wind

Wind power plant	Direct (Job- years/ TWh)	Indirect (Job-years/ TWh)	Induced (Job-years/ TWh)	Total (Job- years/ TWh)
Power Plant Constru ction	160.3	88.2	66.3	314.8
Operatio n	136.9	61.6	74.7	273.2
Total	297.2	149.8	141.0	588.0

Natural Gas	Direct (Job- years/ TWh)	Indirect (Job- years/ TWh)	Induced (Job- years/ TWh)	Total (Job- years/ TWh)
Construction	4.0	2.5	1.2	7.7
Operation	51.3	9.7	26.0	87.0
Fuel extraction and transportation	-	-	-	
Total	55.3	12.2	27.2	94.7

The PARIS REINFORCE project has received funding from the European Union's Horizon 2020 Research and Innovation Programme under grant agreement No 820846.

Source: Nikas et al. 2020

PV power plant	Direct (Job- years/ TWh)	Indirect (Job-years/ TWh)	Induced (Job-years/ TWh)	Total (Job- years/ TWh)
Power Plant Constru ction	612.2	333.7	255.6	1201.5
Operatio n	146.8	56.4	98	301.2
Total	759.0	389.4	353.6	1502.7

Transformation bottlenecks for the energy sector in Greece

	Bottlenecks for more ambition in the power sector (literature-based, ELABORATED DURING THE WORKSHOP)	Bottlenecks for realization of the high ambition scenario (literature- based, ELABORATED DURING THE WORKSHOP)
Social feasibility	 Lignite sector seen as guarantors for economic growth + labor Limited acceptance of wind power expansion 	 Private consumer uptake of e-mobility
Political feasibility	 Target of the coal & NG phase-out not shared by all actors Current regulation poses hurdles to small-scale renewable electricity generation and inclusion of prosumers 	 Limited political certainty on future pathway Strong dependence on natural gas imports from Russia
Technological feasibility	 Upscaling of technologies in an unprecedented way Balancing of non-interconnected islands Lack of Green Hydrogen Infrastructure for storage 	 Infrastructure rollout for e-mobility
Economic feasibility	 High costs of required infrastructure and power storage Lock-In into LNG due to high Investment 	 High invest requirements for LNG and related infrastructure
Socio-economic impacts	 Expected job losses, in particular in mining sector Required reskilling of labor forces 	 High costs of replacing oil and gas boilers with heat pumps
Socio-ecological impacts	 Land use conflicts related to infrastructure + RES expansion 	 Potential negative impacts of connecting islands on marine ecosystems

Source: own representation of Nikas et al. 2020, Wachsmuth et al. 2021, expert knowledge

Transformation bottlenecks for the energy sector in Greece

Source: own representation based on Koasidis, K. et al. (2020b) and Wachsmuth, J.; Aydemir, A.; Döscher, H.; Eckstein, J.; Poganietz, W.-R.; François, D.-E. et al. (2021): The potential of hydrogen for decarbonising EU industry. Brussels: European Parliament.

First Insights Process

- Small number of participants but high quality discussion
- Useful feedback for modelling received in both workshops
- Co-creation approach effective in principle though slot for interactive work rather short
- Several bottlenecks from socio-technical analysis assessed with high importance by stakeholders but in both cases additional ones added

Task 4.6 – Transformative Policy Mixes

First Insights Content

- Modeling Feedback
 - Brazil: specifying contribution of land-use sectors to net emissions
 - Canada: need for a multi-scalar perspective, focus on modal shifts in transport
- Co-creation Key aspects for overcoming bottlenecks
 - Brazil: Recognizing & addressing of inequality/cost of mobility, overcoming resistance of powerful actors, push for science based legislation, fostering sustainable lifestyle choices esp. for wealthy groups
 - Canada: addressing uncertainties around CCS technologies, strategies for decarbonisation of freight transport, urban planning conducive for net zero transport, multi scalar governance

Transformation bottlenecks for the transport sector in Canada

	Bottlenecks for more ambition in the transport sector (literature- based, ELABORATED DURING THE WORKSHOP)	Bottlenecks for realization of the deep mitigation scenario (literature- based, ELABORATED DURING THE WORKSHOP)
Social feasibility	 Goal of a strong electrification not shared by all actors Consumer uptake of e-mobility Uptake of public transportation still limited 	 Acceptance of CCS and BECCS Acceptance of large-scale renewable expansion
Political feasibility	 Partial resistance by oil and automotive industries Different energy resources in provinces and strong influence of provinces on transport systems 	 Independent provinces may hinder stringent implementation Integration with US economy
Technological feasibility	 Maturity of hydrogen-fueled and all-electric HDVs Limited options for modes other than road transport 	Maturity of CCS technologies
Economic feasibility	 Growing transport activity Much lower prices of fossil fuels compared to electricity Infrastructure rollout (catenary) requires large investment 	• Large-scale investments in BECCS needed with uncertain revenue
Socio-economic impacts	 Increasing costs for mobility Denser urban living and transport areas 	Potential job losses in oil sector
Socio-ecological impacts	Resource use for battery production	 Potential negative impacts of large-scale hydropower expansion Nuclear waste treatment Reliance on land use sinks

Source: own representation of Koasidis, K. et al. (2020a) and exert knowledge

Conceptual background: Transformation bottlenecks + policy mix elements

	Transformation bottlenecks (generic examples!!)	Relevant policy mix elements (generic examples!!)
Social feasibility	 lack of acceptance by important groups deviation from societal trends + norms required behavioral changes 	 Inclusive policy making: Processes that foster dialogue,, new ways of thinking or interaction modes, societal experimentation, user spaces or demonstration projects, e.g. roundtables, living labs, Flexible governance: adaptive mechanisms that reflect power structures
Political feasibility	 established power structures limitations of current political system. deviation from political targets + strategies 	 btw. governments, market actors + civil society, public private partnerships, Systemic instruments: linking different elements (stakeholder and activities) of innovation systems, , e.g. institutionalized niche markets
Technological feasibility	 transformation of physical infrastructures required technological maturity of certain technologies not yet available 	• Technology push: Instruments that pay attention to innovative technology options, e.g. grants for demonstration projects, investment loans
Economic feasibility	 mobilizing needed investments need of importing certain goods. deviation from current market trends 	 Demand pull: Mechanisms that stimulate the demand side (economic or regulatory): quotas, contracts for difference, Systemic instruments: mechanisms that foster the provision of the required infrastructures, e.g. regulation of discriminatory-free access
Socio-economic impacts	 job losses price increases deemed unacceptable	• Systemic instruments: mechanisms that tackle structural change and social inequalities as well as socio-ecological impacts
Socio-ecological impacts	additional uses of land and other natural resources deemed unacceptable	Inclusive policy making: processes that foster participation of 'dormant' stakeholder

Source: Wachsmuth, J.; Jackwerth-Rice, T.; Seus, S.; Warnke, P. (2021): Outlining a Methodology for Co-Creating Transformative Policy Mixes. Full paper at the IST 2021 conference.

