

Energy transition beyond market and planning: the critical issue of cooperative architectures for innovative design

Pascal LE MASSON

Professeur Chaire Théorie et Méthodes de la Conception Innovante,
Directeur du Centre de Gestion Scientifique
MINES ParisTech – PSL*
Pascal.le_masson@mines-paristech.fr

The chair of Design Theory and Methods for Innovation

théorie et méthodes de la conception innovante

Chaire d'Enseignement et de Recherche

www.cgs-mines-paristech.fr/tmci/



THALES

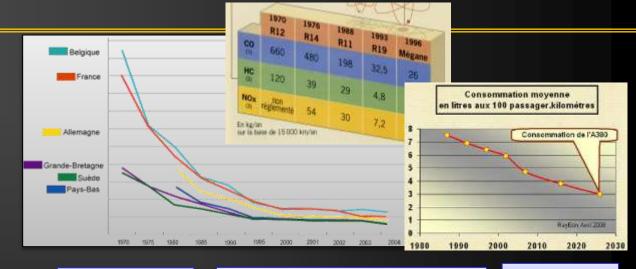
- IPDM conference, CIM community, EURAM,...
 - JPIM, TASM, CIM, RADMA,...

Engineering Design

- ICED, Design Society, SIG Design Theory...
 - RED, JED, CIRP,...

Sources

- Research program on design regimes (French National Research Agency ANR)
- Papers:
 - Agogué, M., Le Masson, P., et Robinson, D. K. R. (2012). "Orphan Innovation, or when path-creation goes stale: missing entrepreneurs or missing innovation?"
 Technology Analysis & Strategic Management, 24, (6), pp. 603-616.
 - Le Masson, P., Weil, B., Hatchuel, A., et Cogez, P. (2012). "Why aren't they locked in waiting games? Unlocking rules and the ecology of concepts in the semiconductor industry." *Technology Analysis & Strategic Management*, 24, (6), pp. 617-630.
 - Robinson, D. K. R., Le Masson, P., et Weil, B. (2012). "Waiting Games: innovation impasses in situations of high uncertainty." *Technology Analysis & Strategic Management*, 24, (6), pp. 543-548.
 - Agogué, M., Yström, A., et Le Masson, P. (2013). "Rethinking the Role of Intermediaries as an architect of collective exploration and creation fo knowledge in open innovation." *International Journal of Innovation Management*, 17, (2), pp. 24.


Energy transition, beyond market and planning: cooperative architectures for innovative design

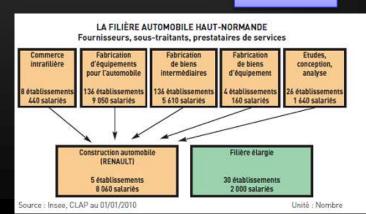
- Characterizing the transition challenge: shaping the unknown
- A paradigm shift in collective action: from decisionmaking to innovative design
- 3. Consequences: new firms and ecosystems organizations **cooperative architectures**
- Conclusion: public policies in transition from « incentives » policy to « capacity » policy

Contemporary innovation: from planning and optimizing to...

- Stabilized valued, continuous improvement of performance
- Stabilized
 competences –
 technical schools,
 R-labs,...
- Industrial « filières »
- Value-chain
 (intégrator, OEM,
 1st tiers suppliers,
 2nd tiers...)

Aéronautic

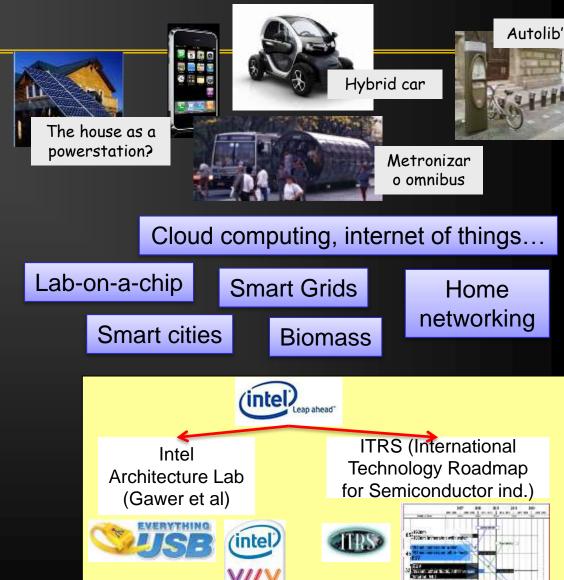
Household applicances


Railways

Electronic

Automotive

Nuclear


Agronomic

Contemporary innovation: from planning and optimizing to... shaping the unknown

- Changing the identity of objects (conceptual breakthrough)
- Rule breaking / creation of new competences (tech & sciences)
- Rejuvenation / creation of industries
- Collaborative design: alliances, platforms, communities and consortia for innovation

Critical issues for expansion

- Fragile giants...
- (Innovation) bubbles hype and disappointment
- Limited success of incubators and start-ups
- Unsuccessful, costly innovations
- Orphan innovations (Agogué 2012)
- Forever technologies of the future

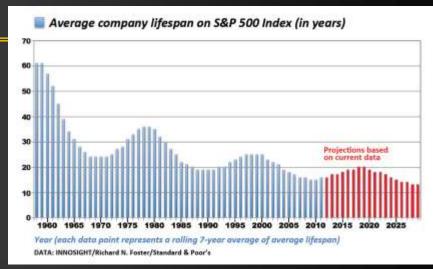
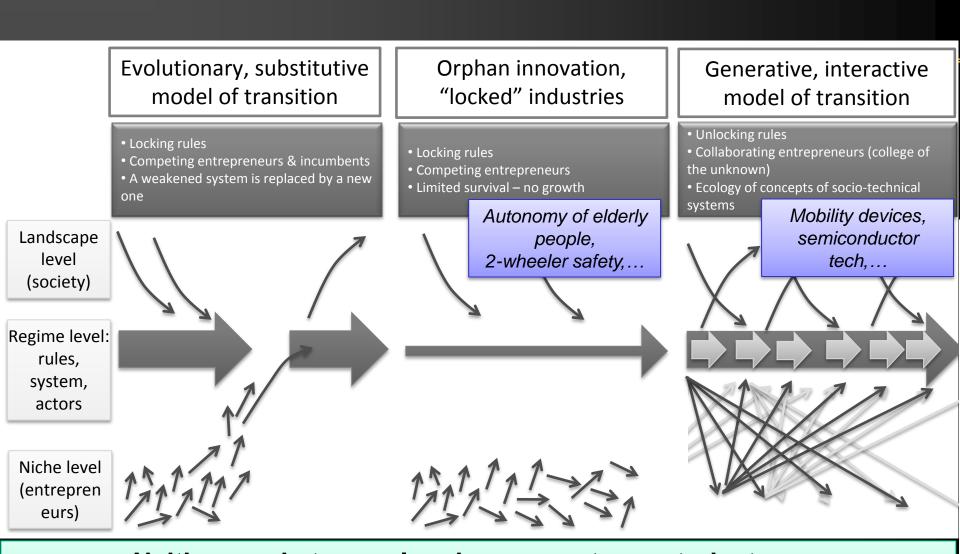



Figure 1. The Gartner Consultancy 'hype cycle'

Regime transition? Not only one trajectory...

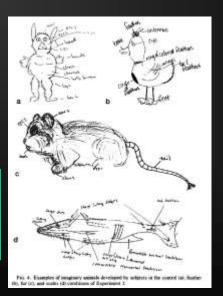
Neither market, nor planning warranty one trajectory... How can we *manage* transition? Collectively?

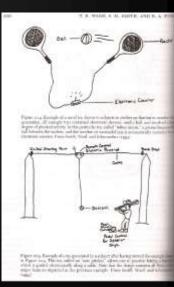
Energy transition, beyond market and planning: cooperative architectures for innovative design

- 1. Characterizing the transition challenge: shaping the unknown
- 2. A paradigm shift in collective action: from decision-making to innovative design
- 3. Consequences: new firms and ecosystems organizations cooperative architectures
- Conclusion: public policies in transition from « incentives » policy to « capacity » policy

Cognitive obstacles to collective expansion

- Open innovation, co-design, brainstorming, living lab...
- Is it efficient?

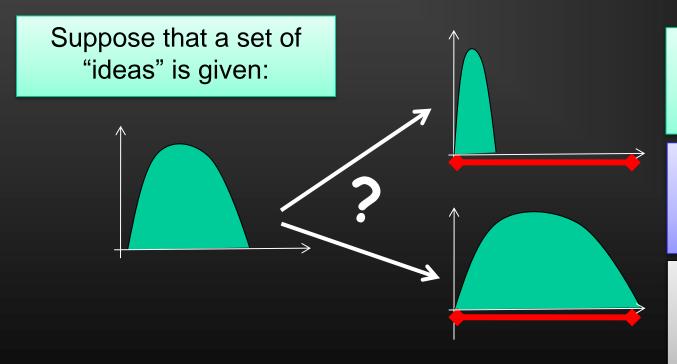

A « productivity gap » phenomenon in brainstorming!
Individual and collective cognitive causes


How to make a square by moving ONE match?

Cognitive fixation on « square »:

Square = geometrical shape

Square = mathematical operation (2x2)



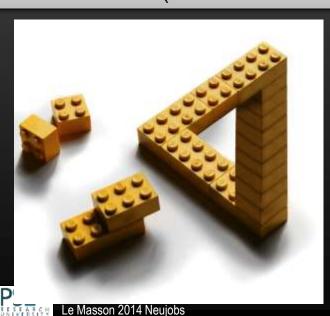
A paradigm shift in collective action: from decision making to design

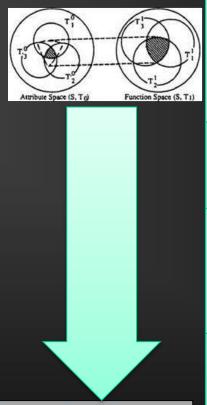
In the 50s : optimization capacity? → decision theory.

Today: expansion capacity? → design theory

Is there a bias? How to measure it?

If there is a bias, what are the causes?


How can one overcome the bias?



« Models of thought » : new design theories for expansive reasoning

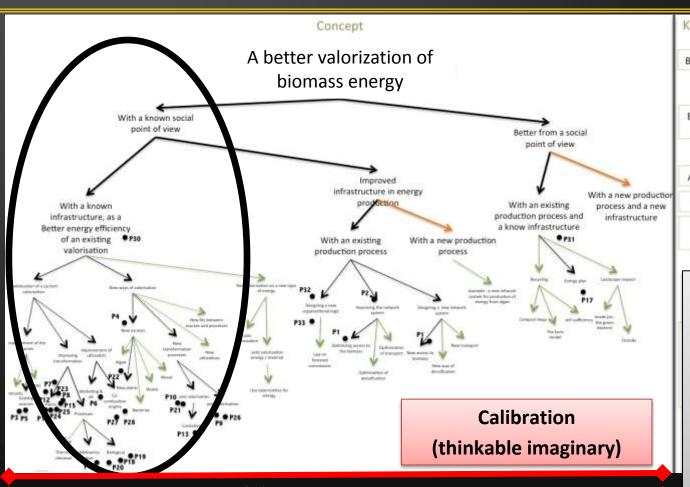
Hatchuel, Le Masson, Reich and Weil 2011 ICED (reviewers favorite)

C-K theory

From the known to the

optimizing,

General design theory (Yoshikawa 1981)


Axiomatic Design (Suh 1988)

Coupled design Process (Braha & Reich 2001)

Infused Design (Reich & Shai 2001)

C-K theory (Hatchuel & Weil 2002) Agogué et al. 2012)

One example: identify fixations in biomass enery with C-K theory

Biomass

Treating raw material

Evaluating raw material

Using raw material

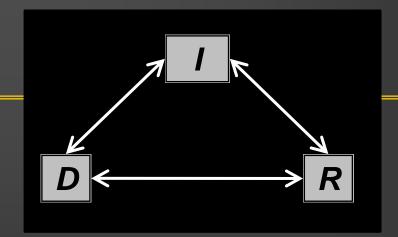
Arbitration food / energy

Valorisation

Type of energy

Using biomass energy

Neither a market issue, nor a planning issue..
But cognitive issue! ->
Organize to expand collectively?

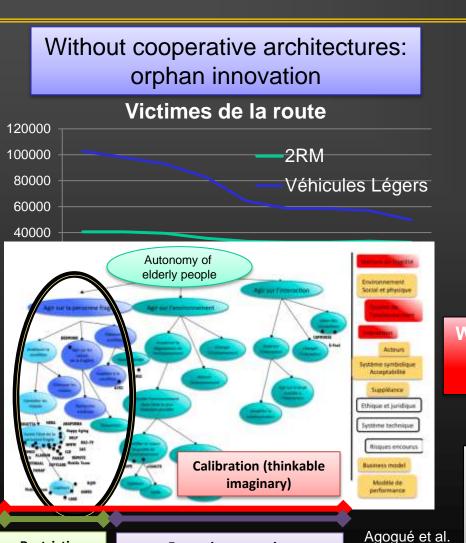

Restrictive reasoning (optimization)

Expansive reasoning

Energy transition, beyond market and planning: cooperative architectures for innovative design

- 1. Characterizing the transition challenge: shaping the unknown
- 2. A paradigm shift in collective action: from decisionmaking to innovative design
- 3. Consequences: new firms and ecosystems organizations cooperative architectures
- Conclusion: public policies in transition from « incentives » policy to « capacity » policy

From R&D to RID


- New methods,
- New organizations
- New strategies (the design of generic technologies → see CFE project)

But the firm alone can not overcome all innovative design issues

new
ecosystems?

Cooperative architectures for innovative design

With cooperative archiecture: expansion & growth

Brevets « chanvre & construction »

FR Patents on Hemp and construction

6 4 2

1980-1984 1985-1989

Without: only one path explored

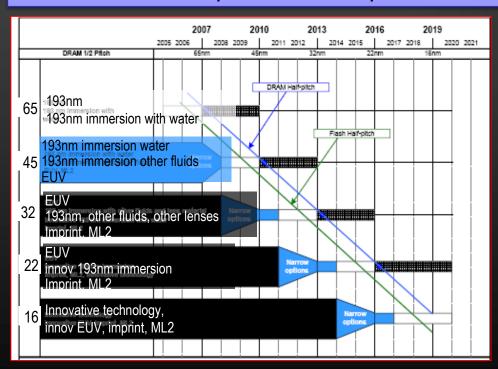
12

With cooperative archi: creation of multiple paths

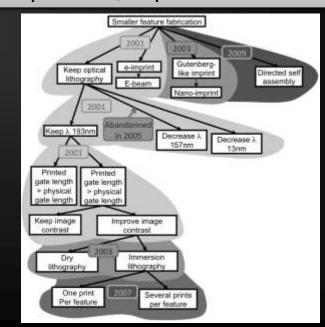
Hemp for middle age houses restoration

Hemp beton, hemp for roofs, for walls, hemp coating, multifunctions (weight, isolation, hygro-inertia,...); with new processes; for bricks,...

Restrictive reasoning


Expansive reasoning

Agogue e 2012)


ITRS, International
Technology
Roadmap for
Semiconductors

Cooperative architecture to address Moore's law: ITRS

- Involve the whole industry every 4 months
- Free map of all the « unknown », needed technologies: open agenda of innovations!
- « We are not picking winners or losers » NOT planning a single path → NOT decision, but cooperation for expansion

Example photolithography -> cooperative, expansive reasoning

The logic of cooperative architecture for innovative design

Cooperation of innovative designers (firms, labs, users,...) to expand « common

unknown »

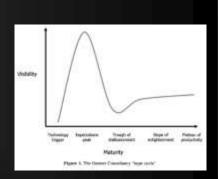
- Larger set of concepts, increase defixation
- Improved methods at the archi level
- Improve innovative design capacities inside companies
- Limit false expectations
- Better risk management at the ecosystem level
- Open to new partners

Variety of forms: « pôles », NGOs, professional associations, (some) research labs, schools, universities,...

Energy transition, beyond market and planning: cooperative architectures for innovative design

- 1. Characterizing the transition challenge: shaping the unknown
- 2. A paradigm shift in collective action: from decisionmaking to innovative design
- 3. Consequences: new firms and ecosystems organizations cooperative architectures
- 4. Conclusion: public policies in transition from « incentives » policy to « capacity » policy

Characterizing the capacities needed for transition


	Optimization and its risks	Innovative design
Reasoning	Decision- optimization → fixation	Expansion
Organization	R&D → no regeneration	RID
Governance	Asset mgt → « low hanging fruits »	Growth
Ecosystem	Value chain → orphan innov, self-destruction	Cooperative architecture

What kind of public policy for innovative design?

Risks of an « incentive » public policy

	Optimization and its risks	Innovative design	Incentives policy?
Reasoning	Decision- optimization → fixation	Expansion	Fixation ++
Organization	R&D → no regeneration	RID	Only delay collapse?
Governance	Asset mgt → « low hanging fruits »	Growth	Perverse incentives
Ecosystem	Value chain → orphan innov, self-destruction	Cooperative architecture	Speculative bubbles

- « Incentive » public policy: support to entrepreneurs, to research,...
- → Not adapted to innovative design and transition
- → And even risky

L'enjeu de politiques « capacitaires »

	Optimization and its risks	Innovative design	Incentives policy?	Capacity policy?
Reasoning	Decision- optimization → fixation	Expansion	Fixation ++	Education
Organization	R&D → no regeneration	RID	Only delay collapse?	« Innovation quality » norms
Governance	Asset mgt → « low hanging fruits »	Growth	Perverse incentives	Innovation report
Ecosystem	Value chain → orphan innov, self-destruction	Cooperative architecture	Speculative bubbles	Design referentials

Today? Some examples

- Education? See companies (Thales,...), univ (Stanford,...)
- Organization? Innovative design, routinized process in some companies
- New governance? See SPE, B-Corp,... (Levillain 2014)
- New ecosystems? See Fraunhofer, chinese incubators,...
- German ecosystem: companies are not alone in front of innovation!
- Powerful design experts: Fraunhofer Institutes
 - ✓ 2MM€ turnover
 - √ 22 000 people
 - √ 66 instituts
 - ✓ Autonomous innovative design policies at the ecosystem level

