Planetary Economics: international dimensions

- Integrating technology and carbon pricing for a 'Club Good'

Michael Grubb

Prof. International Energy and Climate Change Policy, UCL Senior Advisor, Sustainable Energy Policy, Ofgem Editor-in-Chief, *Climate Policy* journal

> Presentation to World Energy Congress European Energy Forum, Paris, 13 March 2015

- Context
- Why a technology lens for international cooperation?
- What are the core problem(s) to be solved?
- The role(s) of carbon pricing
- An international Club of Credibility?

Can we solve it?

ELEONE TARY

- A mega-problem of risk management under deep uncertainty
 - Not the primary science but the consequences
 - .. And how to value them, act, and coordinate response
- "The biggest market failure in history" (Stern)
- "The perfect moral storm"
- A "Super-Wicked" problem

And we have not been doing very well globally ...

- "Current emission trends are at the high end of levels that had been projected ... growing on average at 2.2%/yr since 2000" [IPCC 2014]
- Energy remains an important development challenge
- Yet to overcome the historical pattern of pollution ...
- Negotiations remain mired in 'blame-and-burdens' mentality

Laurence Tubiana's Question

Foundations: Three Domains of decision-making involve different processes which operate at different scales

	DOMAIN	Characteristics	Theoretical foundations	
S O C	Satisficing	Habits, myopia, inattention to incidental / intangible costs; endemic `contractual failures', principal-agent failures, risk aversion to change or investment	Behavioural and organisational economics	T I M E
A L S C	Optimising	Economic optimisation based on relative prices, 'representative agents' with 'rational expectations', stable preferences and tech trends	Neoclassical and welfare economics	H O R I 7
A L E	Transform- ing	Structural, technological, institutional and behavioural change, typically from strategising, innovation, infrastructure investment	Evolutionary and institutional economics	O N

Solutions need to harness corresponding policy pillars, based on the Three Domains, to transform energy systems

- Many international efforts focus on targets or pricing
- Technology has a theoretical appeal in a global context
- And a very practical one
- But has a mixed record and a surprising low profile in the international negotiations
 - Major focus has been push by developing countries on technology transfer / cooperation
 - Which makes industrialised countries nervous both about IP and costs

Planetary Economics

An integrating approach to climate policy

- Nature of the challenge
- Some key observations
- The Three Domains and Three Pillars of Policy
 - Pillar I: Standards and Engagement for Smarter Choices
 - Pillar II: Markets and Pricing for cleaner products and processes
 - Pillar III: Strategic investment for innovation and infrastructure
- Policy Integration
- Strategic implications and conclusions

http://www.climatestrategies.org/projects/planetary-economics/ for information and register of related events.

We are seeking radical innovation in some of the least innovative sectors of our economies

Data source: EU Joint Research Centre on Industrial Investment and Innovation, R&D Scoreboard 2012, http://iri.jrc.europa.eu/scoreboard12.html

Technologies have to traverse a long, expensive and risky chain of innovation to get from idea to market

PLANETARY

Framework Conditions – Macroeconomic Stability, Education & Skills, IP Protection Etc.

m

Fig.9.5 The Innovation Chain

Innovation is NOT synonymous with R&D push

- but the track record of State-led development programmes is mixed

- The theoretical basis
 - Classic R&D market failures
 - The impact of liberalisation
- Some classic energy examples:
 - Nuclear fission
 - Coal-based synthetic fuels
 - Nuclear fusion
- Basic problems of:
 - 'picking winners'
 - Cooperation vs competition
 - Policy displacement

Transformation involves not just technologies but sector infrastructure and institutions – is possible, but complex

Three key "case studies"

- Transport in the Americas
- Electricity in Europe
- Urbanisation in Asia

The systems themselves also become more integrated

- Economic research points two broad aspects for the "Dark Matter" of economic growth:
 - Reducing suboptimal performance of many economic actors and structures
 - Education, infrastructure and innovation
- *ie.* First and Third domain processes are recognised as important for macroeconomic growth. Yet these remain
 - largely absent in global (or national) modelling
 - poorly charted in policy
- Energy is a particularly strong candidate because
 - Pervasive input to numerous production sectors
 - Fossil fuel markets are intrinsically unstable
 - Exceptionally low rates of innovation particularly electricity & construction

What is missing?

Planetary Economics

An integrating approach to climate policy

- Nature of the challenge
- Some key observations
- The Three Domains and Three Pillars of Policy
 - Pillar I: Standards and Engagement for Smarter Choices
 - Pillar II: Markets and Pricing
 - Pillar III: Strategic investment
- Policy Integration
- Strategic implications and conclusions

http://climatestrategies.org/projects/planetary-economics/ for information and register of related events.

Pillar II (Pricing) observations

'Carbon pricing is political suicide'

-Stephan Dion,

former Canadian Environment Minister and (briefly) leader of the Liberal Party Comment after losing the General Election to Stephen Harper

- *Economics* of carbon pricing: design and strategic credibility are just as important as present level
- *Politics* of carbon pricing are driven by distributional impacts *and the lack of clearly articulated positive narrative* for either industry or consumers
- Links to the other two domains are central to any tangible positive narrative, drawing on the Bashmakov-Newbery Constant of Energy Expenditure'

Strategic investment can be costly but the returns can be huge ...

price

Eg. North-Sea oil investments in the 1970s cost UK c.£10bn/yr; full *direct* costs >> \$100/bbl But benefits enormous

Value of low carbon innovation enhanced by a rising carbon reduction value

- We have gained extensive experience of policies to span innovation chain
- Need integration between public and private, & strategic investment and markets
- Infrastructure important as the technologies expand need to overcome lock-in
- Regulatory structures and institutions must evolve along with technologies & systems

IIIII

Figure 10-6: Two kinds of energy future – the carbon divide Source: Upper panel: Gritsevskyi and Nakićenović (2000); lower panel: authors UCL Institute for Sustainable Resources

Planetary Economics

An integrating approach to climate policy

ar**ni histori** avi Soudirolyn

- Nature of the challenge
- Some key observations
- The Three Domains and Three Pillars of Policy
 - Pillar I: Standards and Engagement for Smarter Choices
 - Pillar II: Markets and Pricing for cleaner products and processes
 - Pillar III: Strategic investment for innovation and infrastructure
- Policy Integration
- Strategic implications and conclusions

http://climatestrategies.org/projects/planetary-economics/ for information and register of related events. Effective mitigation policy needs to understand the complementary economic roles of the different pillars

Economic Output / Consumption

Fig. 12.3 Public and private returns in the 3 domains UCL Institute for Sustainable Resources

Changing course requires a sustained package -

the key is to integrate and synergise across all three pillars

.. A practical answer to Laurence's Question

.. *particularly* when same logic is applied to nature of financial systems!

UCL

Clear alignment between theoretical structure of 'Three Domains' and the empirical basis of *New Climate Economy*

TIM

- And both suggest multiple routes to 'co-benefits'

Can we build an international club to link 'efficiency, 'price' and 'innovation' – maybe based on a "first among equals?"

A rising base carbon reduction value could contribute across domains:

1. Attention effects and funding	 rising steadily enables efficiency to keep pace and stop much rise in total bills efficiency programmes to counter regressive concerns? accelerated technology adoption
2. Rising price differential	 steadily reduce use of coal in power generation without huge asset stranding move low cabon techs from transitional subsidies into expanding mainstream markets
3. Long term visibility and leverage	 increased investment stability time and leveraged funding for innovation, infrastructure and tech transfer programmes

- Embedding in international agreement could enhance stability and credibility
- Politically not credible as a *global* deal but could underpin a growing coalition
- Game theory suggests possible advantages to negotiations on a *reduction value*

Follow-up:

Special Session on TECHNOLOGY INVESTMENT, FINANCE, AND THE ROLES FOR PRICING CARBON: DEFINING THE 'CLUB GOOD'

at *Climate Strategies'* Annual Global Climate Policy Conference New Delhi, 30 April & 1 May, 2015

& session summary presentation at International Science conference, 'Our Common Future under Climate Change', Paris, July 7 – 10 July 2015

Planetary Economics:

Energy, Climate Change and the Three Domains of Sustainable Development

IIIII

Grubb, Hourcade and Neuhoff (2014)

Kindle: http://www.amazon.co.uk/Planetary-Economics-Sustainable-Development-sustainableebook/dp/B00JQFBWDO/ref=tmm_kin_swatch_0?_encoding=UTF8&sr=8-1&qid=1415625933

http://climatestrategies.org/projects/planetary-economics/ for information and register of related events.