

Impact of Renewable Energy Policy and Use on Innovation NEUJOBS Conference "Innovation and employment: Cornerstones of energy transiton"

Dr. Felix Groba, DIW Berlin

May 2014

Content

- 1 Effect of RE-Policy and Utilization on Technological Change A Literature Review
- 2 Technological Change Development A Quantitative Analysis
 - **2.1.** Research and Development Spending
 - **2.2.** International Trade
 - **2.3.** Innovation
- 3 Conclusion

1 RE-Policy and Utilization Effect (1)

- Technological Change as process from invention to innovation to diffusion *(Jaffe et al. 2001)*
- Identifying market failure and market barriers (*Mitchel et al 2011; Beck und Marinot 2004*)

 Positive and negative externalities 	 Obstacles on capital markets
 Market power 	 Barriers of information

- Market Mechanisms of technological change
 - "induced innovation" i.e. market participants react to incentives (relative prices) *(Hicks, 1932)*
 - Regulatory market corrections are justified in case of market failures *(Weitzman, 1974)*
 - Factors of innovation and diffusion (Fischer et al. 2003; Popp et al. 2010)

 Typ of policy instrument and 	 Ability to innovate of market
stringency	participants (firms)
• Structure of market/ competition	 Type and costs of technologies

1 **RE-Policy and Utilization Effect (2)**

• Overview of policy instruments on innovation promotion

Market pull policies					
		Technology-specific (Direct)		Non-Technology-specific	
		Price – driven	Quantity-driven		
Market- based	Investment incentives	Investment subsidiesSupportive tax policyTender (price)	 Tendering systems for grants (quantity) Quota (capacity) 	Environmental taxesEmission trading	
	Generation incentives	 Feed-in tariffs Premium feed-in tariffs 	 RE portfolio standards and green certificates Tendering systems for long term contracts 		
Commar Control	nd-and-	 Technology and perfor procedures 	mance standards and authorization		
Volun- tary	Investment Promotion	Shareholder and contr	ibution programs	1	
	Generation promotion	Green tariffs		• Voluntary agreements	
Technol	ogy push poli	icies			
Public grantsTax cr	c R&D spendir s, prices) edits to invest	ng (direct funding, • Su • Fi in R&D pr	 apport for education and training ancing demonstration or pilot Topjects 	trategic development policies echnology exhibitions/fairs	

RE-Policy and Utilization Effect (3)

Relevance of policy mix Applied R&D Basic Demonstration Pre-Commercial Niche Market Fully R&D & Supported Commercial Commercial Cost per unit --Market-pull Policies **Technology-push Policies**

Quelle: Grubb. 2004

Market expansion

- Methodological approaches to gasp technological change and policies
 - Dimensions:(OECD 2009)

- Measure:

for policies, expenditures, prices	for effects
Dummy variables for policies	 Private R&D expenditures
• Level of policy induces prices (taxes, emissions)	Patent applications
Rⅅ expenditures	• Trade with research intensive goods
 Level of scientists/ educational spending 	(level, dynamics, indicators)
Strength of patent protection	 Development of technology costs
Pollution abatement costs and expenditures	

1 RE-Policy and Utilization Effect (4)

- Effects of technological change in renewable energy
 - Competitiveness and und International Trade
 - Porter Hypothesis (Porter und Van der Linde 1995) vs. Pollution Haven (Copeland and Taylor 2003)
 - Lead Market Hypothesis (Beise 2004, 2005)
 - Reduction of technology costs
 - learning by doing at industry level learning or up-scaling at the unit level "learning is a descriptive label for a multi-faceted process, (Wilson 2012) (knowledge generateion, application and exchange)
 - Bosten Consulting Group experience curves, i.e. relation between cumulative production and costs (unit costs)
 - <u>But</u>: Technology costs not only caused by diffusion. Important factors are:
 - learing by searching,
 - costs of components, material, energy, labor.
 - Market characteristics and restrictions (Kobos et al. 2006, Junginger et al 2006, Feriol et al 2009, Zwaan et al.2012, Bolinge & Wiser 2012)

2.1 Research and Development Spending

- Highest spending: US, UK, DE (≈ 45 Mio. \$)
- ≈ 6 % of total R&D spending for energy
- + 30 % since 1985 (+87% 1990), below IEA average
- Research intensity (¢/Mio. \$ GDP) above IEA average
- Highest spending: US, JP, DE (≈ 60 Mio. \$)
- \approx 8% of total R&D spending for energy
- only + 3% since 1985 (-27% 1990), below IEA average
- Research intensity above average.
- DE ranked sixth on spending (≈ 35 Mio. \$)
- \approx 4% of total R&D spending for energy
- + 5900% since 1985 (+1200% 1990), above IEA average
- Research intensity substantially below average.

But: No Data for BRICS, Korea and private R&D spending

2.2 International Trade

- *"Green"* technologies decisive meet climate change challenges.
- Trade as mean for technological transfer.
- Limited literature and market studies.
 - Porter Hypothesis
- Strongly increasing global market dominated by OECD countries.
- Export markets are high income countries, limited exports to others..
- Empirical Analysis:
 - Effect of RE-Policies on trade in export and importing countries.
 - Effect of trade costs.
- Results:
 - trade theory confirmed.
 - Policy in importing countries significant.
 - strong RE policy support increases exports.
 - Innovation is an important element.

Figure: Development of solar PV Technology components *Source:* authors' calculations based on UNCTAD Comtrade 2012

Figure 2: Export flow of solar PV technology components 2008 by region in billion US Dollar. *Source:* Authors calculation and illustration based on UN Comtrade 2012

2.2 International Trade: Germany

- Largest exporter & importer of respective goods since 1990`s. PV +700%, share: 12%; Wind + 900%, 13%; Bio: + 300%
- Import and export decrease in 2012. (*data and EEG-Amendment on PV*)
- OECD/EU main export market.
- China and OECD main import markets.
- Limited exports to developing countries.
- Increasing export specialisation/ Increasing relevance for total exports . (RET 3,9% from total exports in 2012)
- But, constant relevant trade position → increasing imports.
- Export-Import relation (export specialization) increasing disadvantage.

2.3 Innovation

- Strong increase in global innovation for renewable energy technologies (all patents. ≈ 30%; PV ≈ 300%, Wind. ≈ 600%)
- Strong regional differences.
- Difference in target markets and innovating countries.

Figure: Regional Dispersion of patent applications by regions

2.3 Innovation: Germany

- Development substantial larger than global average
 - **Total:** Large share of global patent applications (EU 2008 PV: 53%; Wind: 47%; Bio: 37%) (Global 2008:: PV 23%; Wind 20%, Bio: only 12% → US Dominance)
 - **Dynamics 1990-2008:** Substantially stronger than in other EU countries. (PV: 510%; Wind: 925%; Bio: 160)
- Main target markets for innovations (Patents) from German inventors.
 - EU and developed countries
 - Developing countries marginal (but China)
- But: Medium research intensity per capita & per GDP

1 Conclusion

٠

- Market failures and obstacles as motivations for introducing RE-Policies
- Regulation as effective mean to change relative prices and thus inducing technological change (innovation)
- Market based instruments more effective (efficient) than command & control instruments
 - Successful technological change need policy mix for technology and market development
 - Market structure and technology costs are essential for policy selection.
 - Policy flexibility and stringency define instrument effectiveness.
 - R&DD spending DE low increase of spending since 1990 but research intensity above IEA average (except for biofuels)
- Patent Applications DE leading in patent applications in Europe and US with strong growth since 1990
- International Trade DE exports larger than global average but imports increase more than exports
 - Constantly high export market shares for PV, Wind and biofuel technology but no competitive advantage for PV but for Wind and Biofuel technologies.
 - Strongly increasing role of China

Thank you!

Dr. Felix Groba, MPP Felix.Groba@gmx.net Tel.: +49-17620563422

Backup

2. Analyse zur Dynamik des technologischen Wandels im Bereich EE

- Deskriptive/quantitative Datenanalyse für die EE-Technologiebereiche
 - Photovoltaikanlagen
 - Windenergieanlagen
 - Biokraftstoffe bzw. Technologiegüter zur Bereitstellung von Biokraftstoffen
- Focus auf Deutschland im internationalen Vergleich
- Innovationsindikatoren
 - Forschungs- und Entwicklungsausgaben
 - Patentanmeldungen
 - Handel mit Technologiegütern

(IEA) (bis 2010) (PATSTAT)(bis 2008 Stand Okt. 2010) (UNCTAD) (bis 2011)

- Klassifikation/Differenzierung durch Literatur und Listenabgleich
- Papier soll die Analyse in die bestehende empirische Literatur einordnen

3.3 Country Example: China(1)

Figure: Development of Chinese PV Exports and Imports

Figure: Development of Chinese Wind Exports and Imports

- Strong industry and export development
- Political aim: increase RE- utilisation and closing knowledge gap.
- Recent relevance:
 - WTO, US, EU "price dumping in Chinese PV-module industry"; increase of importing tariffs.
- Research Questions:
 - Identifying potential causing factors
 - Taking RE and innovation policy into account

3.3 Country Example: China(2)

Figure: R&D Spending for RE in central and povincial chinaese governments

- Policies to support innovation electricity generation
- Local market is lagging behind trade development
- Rising S&T spending and innovation
 - Relative foreign knowledge share decreases

- 17 -

3.3 Country Example: China(3)

Results:

- China developed and increaseing competetive advantage
 - Exports account for larger share of total export than global average
 - Chinese industries better in foreign markets than foreign companies in chinese market.
- Major technology exporters are major component importer.
- Difference in market size for clean energy technology components
- Chinese RET-Trade follows expectations of trade theory.
- Policy and market size in importing countries is significant.
- Trade costs less important than expected.
- R&D significant effect on Chinese exports.

Policy Take-Out:

- > Trade, Innovation and utilization markets have to be thought together
- > Tackle barriers: Administrative, Regulatory, Finance, Socio-Cultural.
- Increase coordination between different authorities
- Increase trust among banks and investors
- Reduce asymmetric market information
- > Push realistic perception of RE-costs and recognition of positive side effects
- Reduce number of authorities and further non-trade, non-economic barriers.

Literatur (Auswahl)

- BECK, F. & MARINOT, E. 2004, Renewable energy policies and barriers, *In:* CUTLER, C. (ed.) *Encyclopaedia of Energy*, Academic Press and Elsevier Science, San Diego.
- BEISE, M. 2004, Lead Markets: Country-Specific Drivers of the Global Diffusion of Innovations, Research Policy 33(6-7): 997-1018.
- BEISE, M. & RENNINGS, K. 2005, Lead Markets and Regulation: A Framework for Analyzing the International Diffusion of Environmental Innovations, *Ecological Economics* 52(1): 5-17.

COPELAND, B. R. & TAYLOR, M. S. 2003, Trade and the Environment: Theory and Evidence, Princeton University Press,

- FISCHER, C., PARRY, I. W. H. & PIZER, W. A. 2003, Instrument choice for environmental protection when technological innovation is endogenous, *Journal of Environmental Economics and Management* 45(3): 523-545.
- GRUBB, M. 2004, Technology innovation and climate change policy: an overview of issues and options, *Keio Economic Studies* 41(2): 103-132.
- HAAS, R., et al. 2004, How to promote renewable energy systems successfully and effectively, *Energy Policy* 32(6): 833-839.
- HAAS, R., et al. 2008, Promoting Electricity from Renewable Energy Sources Lessons Learned from the EU, United States, and Japan, *In:* SIOSHANSI, F. P. (ed.) *Competitive Electricity Markets*, Elsevier, Oxford.
- HICKS, J. 1932, The Theory of Wages, Macmillan, London.
- JAFFE, A. B., NEWELL, R. & STAVINS, R. N. 2001, Environmental Policy and Technological Change, *Environmental and Resource Economics* 2241-69.
- MENANTEAU, P., FINON, D. & LAMY, M.-L. 2003, Prices versus quantities: choosing policies for promoting the development of renewable energy, *Energy Policy* 31(8): 799-812.
- MITCHELL, C., et. al. 2011, Policy, Financing and Implementation, *In:* EDENHOFER, O. et. al (eds.) *IPCC Special Report on Renewable Energy Sources and Climate Change Mitigation*, Cambridge University Press, Cambridge and New York.

OECD 2009, Eco-innovation in Industry: Enabling Green Growth, Paris.

- POPP, D., NEWELL, R. G. & JAFFE, A. B. 2010, Energy, The Environment, and Technological Change, *In:* HALL, B. H. & ROSENBERG, N. (eds.) *Handbook in Economics of Innovation*.
- PORTER, M. E. & VAN DER LINDE, C. 1995, Toward a New Conception of the Environment-Competetivness Relationship, *Journal of Economic Perspectives* 9(4): 97-118.

WEITZMAN, M. L. 1974, Prices vs. Quantities, The Review of Economic Studies 41(4): 477-491.

Abgrenzung Patente

IPC Code	Description
Solar Photovoltaic (PV)	
H01L 27/142, 31/00-31/078	Devices adapted for the conversion of radiation energy into electrical
H01G 9/20 H02N 6/00	energy
H01L 27/30, 51/42-51/48	Using organic materials as the active part
H01L 25/00, 25/03, 25/16, 25/18, 31/042	Assemblies of a plurality of solar cells
C01B 33/02, C23C 14/14, 16/24, C30B 29/06	Silicon; single-crystal growth
G05F 1/67	Regulating to the maximum power available from solar cells
F21L 4/00 F21S 9/03	Electric lighting devices with, or rechargeable with, solar cells
H02J 7/35	Charging batteries
H01G 9/20 H01M 14/00	Dye-sensitised solar cells (DSSC)
Wind Energy	
F03D	Wind energy
H02K 7/18	Structural association of electric generator with mechanical driving motor
B63B 35/00 E04H 12/00 F03D	Structural aspects of wind turbines
11/04	
B60K 16/00	Propulsion of vehicles using wind power
B60L 8/00	Electric propulsion of vehicles using wind power
B63H 13/00	Propulsion of marine vessels by wind-powered motors
Biofuels	
C10L 5/00, 5/40-5/48	Biofuels from solid fuels
C10B 53/02 C10L 5/40, 9/00	Biofuels from torrefaction of biomass
C10L 1/00, 1/02, 1/14	Liquid biofuels
C10L 1/02, 1/19	Biofuels from vegetable oils
C07C 67/00, 69/00 C10L 1/02,	Biodiesel
1/19 C11C 3/10 C12P 7/64	
C10L 1/02, 1/182 C12N 9/24	Bioethanol
C12P 7/06-7/14	
C02F 3/28, 11/04 C10L 3/00 C12M 1/107 C12P 5/02	Biogas
C12N 1/13-21, 5/10, 15/00	Biofuels from genetically engineered organisms

Daten:

 EPO 2010, World Patent Statistical Database (PATSTAT), European Patent Office, Munich. DIW Access

IPC Abgrenzung:

- IPC Green Inventory
 <u>http://www.wipo.int/classifications</u>
 /ipc/en/est/
- Dechezlepretre (2011, 2012)