Sectoral employment mutations in the socio-ecological transition

A modelling assessment

B. Boitier¹ N. Lancesseur²

¹Société EURopéenne d'ECOnomie (SEURECO)

²University of Paris 1 & SEURECO

NEUJOBS Conference, Paris, May 12th 2014

Caution

- This work is ongoing and the results presented in this document are prelimenary
- This document is insufficient by itself and the comments of the autors are essential to properly understand the results
- Do not quote

- Context
 - A modelling exercise
 - Two global contexts = Two reference scenarios
 - Two policy responses
- 2 Results
 - How to reach the decarbonisation targets?
 - Carbon price
 - Some insights from energy consumption
 - Impacts on GDP
 - Impacts on Employment
 - Sectoral mutations induced by the decarbonisation
- Conclusion

- Context
 - A modelling exercise
 - Two global contexts = Two reference scenarios
 - Two policy responses
- 2 Results
 - How to reach the decarbonisation targets?
 - Carbon price
 - Some insights from energy consumption
 - Impacts on GDP
 - Impacts on Employment
 - Sectoral mutations induced by the decarbonisation
- Conclusion

The NEMESIS model

To assess the potential impacts of the socio-ecological transition.

- One part of the NEUJOBS¹ project is the quantification of different scenarios on the future of employment in Europe and especially in the case of the socio-ecological transition (Fisher-Kowalski and Haberl, 2007[6])
- Use of the NEMESIS model developed by SEURECO² to quantify these scenarios.
- Translate the global storylines as well as the EU policy response scenarios developed within the NEUJOBS project (Fisher-Kowalski et al., 2012[5]) into quantitative scenarios.

¹www.neujobs.eu

www.erasme-team.eu

The NEMESIS model

An overview of the Black Box (1/2)

- The NEMESIS model covers
 - each EU-27 countries
 - 30 production sectors
 - 27 consumption functions
 - 5 different inputs of which two kind of labour: low-skilled and high-skilled
- The NEMESIS model is a hybrid model combining short-term keynesian features with long-term equilibrium and new growth theory mechanisms³
 - Keynes said that in "the long-run we are all dead"
 - but in the NEMESIS model, "in the long-run Schumpeter has killed Keynes"

³See a detailed description of the model: http://bit.ly/SA8Q8z > < 3 > 2 = 9 000

The NEMESIS model An overview of the Black Box (2/2)

- The NEMESIS model also includes an energy/environment module that provides:
 - energy consumption by 10 different products
 - energy consumption by 5 different sectors
 - power generation mix with 8 different technologies
 - CO₂ emissions by sector and country
 - carbon prices

- Context
 - A modelling exercise
 - Two global contexts = Two reference scenarios
 - Two policy responses
- 2 Results
 - How to reach the decarbonisation targets?
 - Carbon price
 - Some insights from energy consumption
 - Impacts on GDP
 - Impacts on Employment
 - Sectoral mutations induced by the decarbonisation
- Conclusion

Two global contexts Overview of the main assumptions

Table: Summary of main assumptions

		Friendly	Tough
Societal	Demography (million)	+37M	-11M
	Old age dependency ratio (%)	26% to 38%	26% to 39%
	Working age population (million)	-4.5M	-29M
	- High-skilled	+36M	+11M
	- Low-skilled	-40.5M	-40M
Energy prices	Oil price (sUS'10/bbl)	\$78 to \$117	\$78 to \$195
	European gas price (sUS'10/Mbtu)	\$7.5 to \$11.7	\$7.5 to \$12.6
	European coal price (sUS'10/t)	\$99.2 to \$109.3	\$99.2 to \$115.9
Financial	World GDP growth (AAGR)	3.80%	2.5
	European rate of interest (%)*	3.6 to 4.4	3.6 to 5.9
	€/\$ exchange rate	1.3 to 1.3	1.3 to 1.4
	Public finance rule	Stabilisation of public debt	Stabilisation of public debt

Two global contexts

"Friendly" vs "Tough": Some insights

- In the "Friendly" scenario⁴
 - release of the long-run economic growth of the European Union (+2.2% of GDP growth at the end)
 - re-balancing of the European economies and of their public finances
 - progressive return to long-run equilibrium, especially on the labour market (unemployment rate at 7.6% in 2030)
 - relatively strong improvement of the energy efficiency (+2.2%/year)
- In the "Tough" scenario
 - EU GDP growth is penalised by unfavourable external conditions
 - thus, re-balancing public finances is more penalising
 - and labour market remains depressed (unemployment rate at 12.1% in 2030)
 - relatively weak improvement of the energy efficiency (+1%/year) $= 10^{-10}$

^{- (} a) (a) (a) (a) (a) (a) (a) (a)

- Context
 - A modelling exercise
 - Two global contexts = Two reference scenarios
 - Two policy responses
- 2 Results
 - How to reach the decarbonisation targets?
 - Carbon price
 - Some insights from energy consumption
 - Impacts on GDP
 - Impacts on Employment
 - Sectoral mutations induced by the decarbonisation
- Conclusion

Alternative scenarios

- Two alternative scenarios:
 - **Eco-modernisation**, a scenario acheiving an eco-efficient production through market based instruments and price signals to "internalise externalities"
 - Sustainable Transformation, a scenario recognises that there
 are several transitions ahead and that a significant reduction in
 fossil fuel use is necessary.
- Implementation into the NEMESIS model:
 - A unique carbon tax in European Union with
 - recycling through lump sum to households
 - recycling through lower social contribution to firms
- Doubling the labour demand elasticity in all sectors (higher substituability) in order to favour the employment benefits

EU policy responses

Decarbonisation: -40% or -50% in 2030

EU policy responses How much should we reduce in each case?

Source: NEMESIS model

- Context
 - A modelling exercise
 - Two global contexts = Two reference scenarios
 - Two policy responses
- 2 Results
 - How to reach the decarbonisation targets?
 - Carbon price
 - Some insights from energy consumption
 - Impacts on GDP
 - Impacts on Employment
 - Sectoral mutations induced by the decarbonisation
- Conclusion

Kaya identity

• The Kaya Identity (Kaya, 1990[9])

$$CO_2 = CO_2$$

$$CO_2 = \frac{CO_2}{E} * \frac{E}{GDP} * \frac{GDP}{POP} * POP$$

$$dln(CO_2) = dln(\frac{CO_2}{E}) + dln(\frac{E}{GDP}) + dln(\frac{GDP}{POP}) + dln(POP)$$

Kaya identity

• The Kaya Identity (Kaya, 1990[9])

$$CO_2 = CO_2$$

$$CO_2 = \frac{CO_2}{E} * \frac{E}{GDP} * \frac{GDP}{POP} * POP$$

$$dln(CO_2) = dln(\frac{CO_2}{E}) + dln(\frac{E}{GDP}) + dln(\frac{GDP}{POP}) + dln(POP)$$

Kaya identity

• The Kaya Identity (Kaya, 1990[9])

$$CO_2 = CO_2$$

$$CO_2 = \frac{CO_2}{E} * \frac{E}{GDP} * \frac{GDP}{POP} * POP$$

$$dln(CO_2) = dln(\frac{CO_2}{E}) + dln(\frac{E}{GDP}) + dln(\frac{GDP}{POP}) + dln(POP)$$

How to decarbonise?

Energy efficiency and energy mix work together

	Energy Mix	Energy intensity	GDP
Friendly - Eco-modernisation	50.8%	44.2%	5.1%
Tough - Eco-modernisation	49.8%	48.7%	1.5%
Friendly - Sustainable Transformation	53.4%	41.2%	5.4%
Tough - Sustainable Transformation	55.2%	43.0%	1.8%

Source: NEMESIS Model

- The decarbonisation of the European economy will passe through:
 - change in energy mix
 - and improvement of energy efficiency

How to decarbonise?

Energy efficiency and energy mix work together

	Energy Mix	Energy intensity	GDP
Friendly - Eco-modernisation	50.8%	44.2%	5.1%
Tough - Eco-modernisation	49.8%	48.7%	1.5%
Friendly - Sustainable Transformation	53.4%	41.2%	5.4%
Tough - Sustainable Transformation	55.2%	43.0%	1.8%

Source: NEMESIS Model

- The decarbonisation of the European economy will passe through:
 - change in energy mix
 - and improvement of energy efficiency

- Context
 - A modelling exercise
 - Two global contexts = Two reference scenarios
 - Two policy responses
- 2 Results
 - How to reach the decarbonisation targets?
 - Carbon price
 - Some insights from energy consumption
 - Impacts on GDP
 - Impacts on Employment
 - Sectoral mutations induced by the decarbonisation
- Conclusion

Carbon price Carbon price matters!

Carbon price Marginal abatment curves

- Context
 - A modelling exercise
 - Two global contexts = Two reference scenarios
 - Two policy responses
- 2 Results
 - How to reach the decarbonisation targets?
 - Carbon price
 - Some insights from energy consumption
 - Impacts on GDP
 - Impacts on Employment
 - Sectoral mutations induced by the decarbonisation
- Conclusion

Share of RES in power generation RES are drivers of the change in the energy mix

Context Results Policy issues What matters?
Price
RES
GDP
Global Employment
Sectoral mutations

Share of RES The 20% target is not easily reached!

- Context
 - A modelling exercise
 - Two global contexts = Two reference scenarios
 - Two policy responses
- 2 Results
 - How to reach the decarbonisation targets?
 - Carbon price
 - Some insights from energy consumption
 - Impacts on GDP
 - Impacts on Employment
 - Sectoral mutations induced by the decarbonisation
- Conclusion

GDP

A moderated impact on GDP

Table: GDP change w.r.t. reference scenarios (%)

	With recycling	Without recycling
Friendly - Eco-modernisation	-0.55%	-1.23%
Tough - Eco-modernisation	-0.35%	-2.13%
Friendly - Sustainable transformation	-1.57%	-3.08%
Tough - Sustainable transformation	-0.75%	-4.34%

Source: NEMESIS model

Contribution to GDP change Friendly - Sustainable transformation

Source: NEMESIS model

- Context
 - A modelling exercise
 - Two global contexts = Two reference scenarios
 - Two policy responses
- 2 Results
 - How to reach the decarbonisation targets?
 - Carbon price
 - Some insights from energy consumption
 - Impacts on GDP
 - Impacts on Employment
 - Sectoral mutations induced by the decarbonisation
- Conclusion

Macroeconomic employment Take advantage of a depressed labour market

Context **Results** Policy issues What matters?
Price
RES
GDP
Global Employment
Sectoral mutations

Macroeconomic employment

Sensibility analysis - Initial Employment Elasticity of Substitution (divided by 50%)

- Context
 - A modelling exercise
 - Two global contexts = Two reference scenarios
 - Two policy responses
- 2 Results
 - How to reach the decarbonisation targets?
 - Carbon price
 - Some insights from energy consumption
 - Impacts on GDP
 - Impacts on Employment
 - Sectoral mutations induced by the decarbonisation
- Conclusion

Production

Friendly - Sustainable Transformation

Source: NEMESIS model

Production A sectorial shift

Source: NEMESIS model

Employment Friendly - Sustainable Transformation

Employment Jobs creations and destructions

Source: NEMESIS model

Summary

Key points for 2030 European mitigation policy (1/2)

- The decarbonisation of the European economy should combine change in energy mix and improvement of energy efficiency
 - But, is it neccessary to impose a target on each?
- The carbon price is an efficient economic instrument to support the decarbonisation
 - But, as currently shonw by the EU-ETS market, cap-and-trade can nearly miss the role of carbon price, as signal
- Decarbonisation of the European Union could be done at a weak economic cost
 - Insomuch as revenues from economic instruments are suitably sused to facilitate this transition

Summary

Key points for 2030 European mitigation policy (2/2)

- Transition to lower carbon intensive society could be a good opportunity to create new jobs
 - Especially in a context of a depressed labour market
- The decarbonisation of the European implies a sectoral shift opening a space for policy action:
 - to support penalised activities, sectors and employees
 - to promote and organise the development of related skills

Thanks

Thanks for your attention

References I

FIA

- B. Boitier, N. Lancesseur, and P. Zagamé. Global scenarios for European Socio-ecological Transition. Working Paper D.9.4, NEUJOBS 7th FP, 2013.
- EEA European Environmental Agency. National emissions reported to the UNFCCC and to the EU Greenhouse Gas Monitoring Mechanism. Database, July 2012.
- International Energy Outlook 2011.
 Technical report, US Energy Information Administration, 2011.

References II

Energy statistics - quantities, annual data.

Database, December 2012.

M. Fisher-Kowalski, W. Haas, D. Wiedenhofer, U. Weisz,

I. Pallua, N. Possaner, A. Behrens, G. Serio, M. Alessi, and

E. Weis.

Socio-Ecological Transitions: Definition, Dynamics and related Global Scenarios.

NEUJOBS Deliverables - State Of the Art Report 6/D1.1/D1.2, NEUJOBS, 2012.

References III

M. Fisher-Kowalski and H. Haberl.

Socioecological Transitions and Global Change: Trajectories of Social Metabolism and Land Use.

Advances in Ecological Economics Series. Edward Elgar Pub., 2007.

🦫 C. Huisman, J. de Beer, R. van der Erf, N. van der Gaag, and D. Kupiszewska.

Demographic scenarios 2010- 2030.

NEUJOBS Working Paper D.10.1, NEUJOBS, September 2012

References IV

World Energy Outlook 2012.

Technical report, International Energy Agency, 2012.

🍆 Y. Kaya.

Impact of carbon dioxide emissions control on gnp growth: interpretation of proposed scenarios.

In Paper presented to IPCC Energy and Industry Sub-Group, Paris. 1990.

