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⋆Addendum to the intermediary report

- CFE Contract 1003

This intermediary report aims at presenting our researches on systemic risk, from April
2010 to January 2011. Since this work is in the direct prolongation of a previous contract
on the same subject (CFE Contract number 58) we decided to integrate it with the pre-
vious report, written in March 2010. This results in quite an important document (more
than 150 pages) where at least 50 pages are entirely new. Such a choice insures the global
coherence of the document: there is no need, for example to present the data and the
problematics. This does not mean, however, that we did not enhance our database. In
order to give evidence of what was done during the last 10 months, we put the recent
work, as often as possible, in chapters that are entirely new, and we marked them with
a star (⋆). Compared with what was done in the previous report, the reader will find,
essentially, three new chapters (ie Chapters 3, 5 and 6) as well as a conclusion (Chapter 9)
and some supplements in Chapter 8. All these chapters are summarized in the executive
summary that follows this addendum.
Since April 2010 our attention was focused, firstly on the prolongation of the empirical
analysis initiated previously (Chapters 3, 5 and 6), and secondly on a reflection on the
way we could built a model of systemic risk in derivative markets (Chapter 8).
We first undertook an analysis of the behavior of futures prices in the maturity dimension,
especially as regards to extreme deviations. The results of this analysis can be found in
Chapter 3. Part of this chapter has just been accepted for publication in the review Phys-
ica A and will be presented at an international conference on econophysics in Shangai, in
June 2011.
We then examined the causality relationships among derivative markets. In the previ-
ous report, an appropriate methodology for understanding systemic risk, graph theory,
has indeed been identified. By using this approach, and more specifically by relying on
Minimum Spanning Trees, we have been able to show the pathways by which price shock
waves can be transmitted. Now, we are looking for a method for directed graphs, which
would allow us to study the direction in which price fluctuations are propagated. Two
kinds of methods are investigated: the Granger methodology (Chapter 6) and the concept
of conditional entropy (Chapter 7).
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⋆Addendum to the intermediary report - CFE Contract 1003

Finally, an important issue of the work undertaken almost two years ago is to allow for
the elaboration of a model representing the links connecting the derivative markets. The
usefulness of such a model will be to highlight the mechanisms that are responsible for
markets integration and their implication in prices moves. Moreover, such a model will
allow for the study of diverse shock scenarios for the prices path propagation and for
the intensity of this transmission. On the basis of our empirical findings, we progressed
towards the construction of such a model, as can be seen in Chapter 8.
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Executive Summary

The objective of this research project is to study systemic risk in energy derivatives mar-
kets. Concerns about systemic risk have recently grown in financial markets, notably in
energy markets. The latter become more and more integrated, both as regards each other
and as regards other markets. For some years now, price increases in energy commodities
have often been invoked to explain that of soft commodities like corn, wheat, rape or
sugar cane. Moreover, since commodities are considered as a new class of assets, they are
intensively used by portfolio managers for diversification purposes. Consequently, part
of the price movements recently recorded on commodity markets might be explained by
external events like the fluctuations recorded in stock prices or dollar exchange rates.
The financial literature has investigated the question of systemic risks on commodity mar-
kets in different ways: herding behavior, co-integration techniques, spatial and temporal
integration, etc. These studies of the way shocks appear in financial markets, and the
way they disseminate among other markets generally take into account one or two of the
dimensions of integration, which can be examined according to three different points of
view: space, observation time, and maturity. The analysis of the relationships linking dif-
ferent markets, for a single commodity being simultaneously negotiated in several places,
has to do with the spatial dimension of integration. When the focus is placed on how the
relationships between several commodities evolve over time, it is the temporal dimension
of integration which is examined. Lastly, it is possible to consider a third dimension,
related to the term structure of commodity prices, i.e. the relationships linking, at a
specific date, several futures contracts with different maturities.
So, while it is highly likely that integration and systematic risk are progressing in energy
derivatives markets, the previous studies always gave preference to one or two dimensions
of the integration. Such a conclusion naturally leads to the following question: “why not
try to study the three simultaneously?” Part of the answer lies probably in the fact that
its is not that easy. Taking into account simultaneously the three dimensions of integra-
tion implies the possibility of, firstly being able to collect a huge amount of data, secondly
being able to analyze the data, and thirdly taking into account the possible complexity
of the system described by the data.

This report presents the results of our investigations on that subject, one year and a
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Executive Summary

half after we started our research. It contains nine chapters. The first chapter is dedi-
cated to a general introduction, the presentation of our main objectives and the scientific
relevance of our project, first for the French Energy Council, second from an academic
point of view. The aim of the second chapter is the presentation of the database and its
main characteristics. The third chapter is devoted to the statistical analysis of derivative
markets in the maturity dimension. Part of this chapter has been accepted for publication
in the journal Physica A, which is one of the main academic reviews in statistical physics.
In the fourth chapter we provide for the methodology and tools used to measure the inte-
gration of the markets. In the fifth chapter we expose the results of the empirical analysis
of the energy markets. In the sixth chapter we provide for a systemic approach for all
markets in the spatial, maturity and three dimensions. The seventh chapter presents, first
the methodology of Granger causality, and second our analysis of causal links between
energy markets. The eighth chapter focuses on the study of information transfer. We
first present the theory based on conditional entropy ; we then expose our results on the
transfer of information in the maturity dimension, on the Light Sweet crude oil. The
ninth chapter is devoted to a short review of the so-called Ising model which is a major
model of collective behavior. These pages are taken as an opportunity to expose impor-
tant features of statistical physics, such as the concept of minimal model, as well as the
presentation of a model of systemic risk. Finally we present our conclusions and explain
the policy implications of our study.

In the first chapter of this report, we underline the objective of our research project,
which is the three-D investigation of systemic risk in energy derivative markets. This re-
search aims at enhancing the understanding of market mechanisms. To do so, we intend
to transfer technical skills from physics to economics in order to extract relevant informa-
tion from the three dimensional space (time, space and maturity). We then explain why
systemic risk seems an interesting investigation field for statistical physics. Systemic risk
can be briefly defined as the sudden manifestation of a dysfunction occurring on a large
scale and resulting from a strong integration of the markets. At a microscopic scale, the
interactions between the individual actors operating in such a market draw a complex
network which is partly responsible for the integration and may lead to non predictable
movements spreading throughout a whole economic sector. In other words, such a net-
work might give rise to the emergence of a global self organized behavior resulting from
local interactions. Such a phenomenon appears in physics when a system changes from
one state to another one, for example when water (liquid phase) turns into ice (solid
phase). According to the authors of this report, such an analogy between finance and
physics has a high potential, because physicists developed many theoretical or numerical
tools allowing them to investigate the behavior of complex systems.
We also found it important to underline the relevance of such a subject for an organiza-
tion like the French Energy Council. This point was underlined at the beginning of this
executive summary, through the presentation of the objectives of this report. So let us
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just underline here that it is crucial, today, to know how strongly, in the spatial as well as
in the maturity dimension, energetic markets are self-integrated or integrated with other
derivatives markets, and whether or not they could be affected by systemic risk. If it were
the case, this risk would need to be characterized and quantified.
Finally, we give our point of view on the scientific and academic pertinence of the project.
From an academic point of view, the aim of this project is to connect two different fields
of investigation: finance and physics. For twenty years, the economy was of interest to an
increasing number of physicists. More precisely, minimal models, that is to say, models
relying on very simple assumptions, have recently offered fruitful insights into the un-
derstanding of the role of simple mechanisms in the emergence of complex patterns or
information transfers. Thus we hope that, as was the case for biology, dynamical systems
and also economy, we will be able to construct a new model capturing the main features of
co-movements in commodity derivative markets. Before reaching such a long-term objec-
tive, we needed to explore the empirical relationships linking energy derivative markets.
This is the aim of this report.

Over the past months, we first realized an important and continuous effort with the
data. Extracting the data and analyzing the database represented a huge amount of work
and time. During this period, we collected nearly two million daily data and analyzed
more than six hundred fifty thousand prices. In the second chapter, firstly we present the
markets selected for the empirical study, namely energy, agriculture and financial assets.
On the basis of the Futures Industry Association’s monthly volume reports, we retained
those contracts characterized by the largest transaction volumes. The choice of these three
sectors is motivated by recent observations of changes in financial markets. Commodities
derivatives are more and more integrated: within the sector of commodities and also with
other markets. Furthermore, commodities are considered as full fledged assets used for
diversification purposes by portfolio managers. Consequently, price increases in the given
commodities has in part been associated with price fluctuations of energy commodities or
could be explained by a priori foreign events like the drop in equities or exchange rates.
On these markets, we collected settlement futures prices as well as opening prices, trans-
actions volumes and open interest. We however only used futures prices for this part of
the research. We leave the information provided by transaction volumes and open interest
for further investigations, as well as, if necessary, the extension of the database. Then
we expose the main characteristics of our database and present a brief overview of the
behavior of futures prices over our study period. Finally, we propose a discussion on the
seasonal behavior of the commodities under examination. We tried to identify a seasonal
pattern in the futures prices of petroleum products, through - among others - the Discrete
Fourier Transform method. However, so far, the results have not proved convincing.

In the third chapter, we expose a set of empirical properties emerging from the sta-
tistical analysis of prices changes. The first section of the third chapter is dedicated to
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Executive Summary

the presentation of stylized facts, that is to say, empirical statistical properties observed
for most of the financial markets independently of their nature (stocks, indexes, interest
rates...). The second section presents results on the statistical properties of the deriva-
tives we study, in the maturity dimension. We first find a clear distinction between the
financial underlying assets and the commodities. Whereas the mean absolute returns and
the variance exhibit a bell curve for interest rates, with a maximum located at a maturity
indicating a limit of the monetary policy influence, the commodities can be distinguished
by a decreasing pattern with the maturity. This phenomenon may appear universal for
energy as well agricultural commodities. Moreover, the analysis of the skewness and
the kurtosis shows that derivative markets tend to exhibit an asymmetrical distribution
skewed to the left (right) when they are in contango (backwardation). In the last section
of the third chapter, we focus on the study of rare events. We observe that, in their
majority, the distribution of the returns along the term structure do not belong to the
Lévy stable domain. More importantly, we find that the value of the average tail exponent
defines two regimes of risks reflecting a segmentation in the maturity dimension and a
greater probability of extreme events for maturities above 18 months.

In the fourth chapter, we suggest a method which enables us to measure the integra-
tion of the markets empirically. Among the different tools available in physics, one seems
naturally relevant to study the three dimensional integration of derivative markets: the
graph theory. A graph is a mathematical representation of pair wise relations within a
collection of discrete entities. A financial market is composed of a large number of assets,
such as equities, bonds or derivative products, which are linked together with different
intensities. Thus a representation of the financial markets through the prism of graphs
could be interesting, as economic information will emerge from the topology of the graphs.
Among the different graphs available, we chose to use the minimum spanning tree because
of its uniqueness and simplicity. The latter indeed provides the shortest path linking the
nodes of the graph to each other. Thus, it reveals the geometric aspects of correlations
between the different entities under examination. As the markets are intrinsically time
dependent, it is necessary to study the dynamical properties of both the correlations and
the minimum spanning trees. We examine the time dependent properties of the correla-
tions, as well as the markets’ strength, which gives information on how much a market is
correlated to the others. A further characterization is obtained by quantifying the degree
of complexity of the minimum spanning trees. The former information is given by the
so-called allometric exponent, which indicates what kind of path a shock can follow to
spread through to other markets. We also study the robustness of the tree topology in
respect of market events using the survival ratio. This gives the fraction of survival links
and shows the importance of rearrangements between two consecutive minimum spanning
trees.

In the fifth chapter, we apply this method to our data and carry out empirical tests
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in the energy markets. The maturity dimension is explored for two markets: American
crude oil and heating oil. Before proceeding with these tests, we assumed that they would
reflect the presence of the Samuelson effect on the data. In an ideal case, the graph rep-
resenting the maturities would be perfectly organized, ranging regularly from the first
to the last delivery date. In other words, the topology of the minimum spanning trees
would be linear. We were nevertheless surprised to observe our results on heating oil.
The maturities between one and 36 months are perfectly ordered. As far as crude oil is
concerned, the results are less perfect, but still very interesting. We suppose that what
we observe on crude oil is partially the results of the maturation process of the market
over time, but we intend to make further investigations on this market before coming
to a more definite conclusion. As far as spatial integration is concerned, the results are
also very interesting. In order to give greater insight on the empirical relationships link-
ing five markets, we carried out several series of tests, on different maturities: one, two,
three, six and twelve months. It so happens that the topologies of the graph change with
the maturity under consideration: they are the same for the one, two and three months’
maturities, but not for the six and twelve months’ maturities. In each case however, the
links between markets, via the representation of the minimum spanning trees, have an
economical interpretation that satisfies intuition. We interpret this result as a positive
test for the relevance of our method and its application to derivative markets. Comparing
the results obtained with the different maturities, we found that the strength of the inte-
gration increases with the maturity. The latter result is original and has not as yet been
mentioned in other studies. In particular, the authors of [59] identified the spatial links
between oil markets but omitted the information provided by the maturity dimension.

The sixth chapter provides a systemic analysis of all markets selected for the study and
performs empirical tests in the spatial dimension, maturity dimension as well as on the
three dimensions. To the best of our knowledge the maturity dimension and the three
dimensions have not been studied previously.
The first part of the study is devoted to the visualization of the MST of the three sec-
tors simultaneously. The visualization of the MST firstly gives evidence of a star-like
organization of the trees in the spatial dimension, whereas the maturity dimension is
characterized by chain-like trees. These two topologies merge in the three-dimensional
analysis. A typical three-dimensional MST is presented in Figure 6.2. In order to help
the visualization of the tree all maturities are given with the same symbol and distance
between the nodes is set to unity. The star-like organization that appears on this Figure
reproduces the three different sectors under examination: energy, agriculture and finance.
We emphasize that the linear shape of the trees observed in the energy sub-group is also
valid for the agriculture as the financial sectors.
American and European crude oils simultaneously occupy the center of the graph and
ensure the links with agricultural products and financial assets. Thus our first important
conclusion is that crude oil is the best candidate for transmitting prices shocks. If such a
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shock appears at the periphery of the graph, unless it is absorbed quickly, it will neces-
sarily pass through crude oil before spreading to the other energy products and sectors.
Moreover, a shock will have an impact on the whole system that will be all the greater
the closer it is to the heart of the system.
In the third section of the chapter we explore the dynamical properties of the system.
We have seen that the level of integration is greater in the maturity dimension than in
the spatial one. This result reflects the fact that arbitrage operations are far easier with
standardized futures contracts written on the same underlying asset than with products
of different natures. The analysis of how this level evolves over time shows that integra-
tion increases significantly on both the spatial and maturity dimensions. Such an increase
can be observed on the whole prices system. It is even more evident in the energy sector
(with the exception of the American and European natural gas markets) as well as in the
agricultural sector. The latter is highly integrated in the end of our period. Lastly, as
far as the financial sector is concerned, no remarkable trend can be highlighted. Thus,
as time goes on, the heart of the price system becomes stronger whereas the peripheral
assets do not change place significantly.

In the seventh chapter, we use Granger causal analysis in order to investigate the in-
terplay between a new manmade commodity, that is to say carbon markets, and the main
energy markets, namely the two most important crude oil markets, natural gases, coal
and electricity. We first briefly recall the methodology of Granger analysis and present
the characteristics of three extra energy markets that have been added in this chapter.
We find evidence of strong and immediate causality links running from crude oil to car-
bon returns. Moreover, the Light Sweet Crude and the Brent both drive (in the Granger
sense) natural gas, coal as well as electricity. In return, coal and natural gas markets
similarly affect carbon markets. These results reveal a coherent picture, which is consis-
tent with economic and practical considerations and confirm previous findings. They give
evidence of a level of integration within the energy markets under scrutiny. Finally, our
most important result is that, once again, prices for crude oil futures are at the center
of the web that different commodity prices maintain with each other. Hence, as integra-
tion can be seen as a condition for the transmission of prices fluctuations, and thus shocks.

The eighth chapter is dedicated to the study of information transfer. We present in
this chapter some preliminary results on information transfer between maturities for the
LightSweet crude oil. In a first step of our study, we have restricted the analysis, first on
the most important energy market and second, on the maturity dimension. Indeed, the
temporal organization of the maturities is easier to understand than the spatial organi-
zation of the markets. Our two main results are the non-trivial behavior of the mutual
information with the level of correlation between maturities and the sharp segmentation
of the emitted information that appears after the maturity 21 months.
In the future, we will further explore these results and extend our study to all the deriva-
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Executive Summary

tives that belong to our database. We hope that we will enhance the understanding of the
notion of segmentation in derivatives markets with the concept of information transfer.
Furthermore, we are close to provide results on derivatives networks with directed links.
We will then be able to compare the topology as well as the statistical properties between
undirected and directed networks,for minimum spanning trees as well as for full connected
graphs.
The ninth chapter of this report is devoted to a theoretical study focusing on the way we
could build a minimal model. This chapter should naturally be read as an initial attempt
to think about such a model rather than to build it.
We suggest the use of recent methods originated from statistical physics, hoping that the
tools and ideas previously developed for complex systems will also be relevant for financial
markets. If we indeed reformulate from a physicists point of view the question of systemic
risks and the spreading of shocks among markets, the following question arises: “How
can global collective behavior occur from local inter- actions?”. We have the intuition
that concepts originated from the physics of phase transition and critical phenomena,
such as collective behavior, scale invariance and renormalization may be useful to con-
sider that question theoretically. Even if financial markets are not ruled by natural laws,
they cannot escape the fascinating ubiquity of collective motion. Like statistical physics,
economics aims to describe the equilibrium and dynamics of a large number of entities,
such as economic agents, which interact with each other. In both cases these interactions
lead to sudden collective phenomena.
We first point out the spirit of a minimal model. Such a model indeed results from a
choice to be made between two contradictory objectives: first, the formulation of equa-
tions which remain simply enough and secondly the need to capture all the main features
of the phenomena under examination.
We then present what a physicist means by the concept of collective behavior and what
kind of tools or measures exist in order to represent and to detect such behavior. The
seminal model on that subject is the so-called “Ising model”, which describes the sponta-
neous magnetization in a magnetic material. A magnetic field results from the collective
behavior of microscopic entities. On a microscopic scale, each electron carries a physical
quantity, the spin. The latter is more or less the same for all electrons and creates a
macroscopic magnetization. The Ising model allows the interactions between the spins
to be determined. We firstly present it in a one dimensional space. Naturally, higher di-
mensions are needed. Unfortunately, to deal with a high dimensional system - or a more
complicated model - some approximations are necessary. A very important and useful
approximation method is the mean-field approximation. The mean field method replaces,
within a population, the influence that an individual’s neighbors might have on that spe-
cific individual, by their average impact. This chapter of the report must be considered
as the reflection of our state of advancement so far. Indeed, the core of our next project
is the development of such a model inspired by statistical physics.
Lastly, we present in this chapter a model that we regard as the best candidate to model

xvi



system risk. The main idea is to use a set of coupled equations in order to represent the
dynamics of the term structure as well the three dimensional system. More precisely, we
aim to resort to equations that are used to describe the dynamic of a brownian particle
in a harmonic potential. We find several analogies that motivate this approach. Indeed,
prices are variables evolving randomly in time, submitted to mean reverting and forces.
It is obvious that such a simple approach would not be able to reproduce a realistic
dynamic, since it is well known that prices diverge from a pure brownian motion. Nev-
ertheless, our empirical results can give enough information to introduce coupling terms
between the equations to make the dynamic richer. We can build global forces depending
on the state of the whole system, such as a mean field action, and local forces depending
of the states of the most correlated markets, that is to say forces between edges in the
minimal spanning tree. The inner properties could also be modified according to the past
prices properties, for instance the equilibrium can be changed according to the historical
mean price and volatility. In addition to the coupling terms and the modification of the
inner properties, we could also introduce directionality in order to break the symmetry
of the cross-correlation coefficients. Indeed we can expect asymmetric forces along the
term structure (the impact is probably not the same from the first to the last maturity
and from the last to the first). Furthermore, commodities are submitted to industrial
processes that induce directionality in prices movements.

The main part of our further studies will be devoted to modeling the collective behavior
of derivatives energy markets and systemic risk. We will use theoretical concepts inspired
by statistical physics, especially the use of minimum model. Our former results will lead
us to establish fundamental hypothesis and play the role of guideline in the development
of the model. In particular we want to determine in a single framework the mechanisms
of price’s term structure (which lead to linear tree), as the interactions between markets
(which lead to star-like tree). Once the two typical shapes will be achieved, we will be
able to use the model in order to understand the complex process of branching that ap-
peared while the three dimensions of integration, namely where in their price’s curves two
different derivatives markets are most correlated. A major contribution of this part of the
modeling will be to understand how (and where) links appear between markets. Secondly,
we will proceed to a shock analysis and consider such questions as the existence of tree’s
shape that help or prevent to strong shocks, the required number of markets involved in
an event to propagate it, or the amplitude of shocks that can involved in systemic risk.
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1

Issues of this research project

Contents

1.1 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Interest of statistical physics for the question of systemic risk 2

1.3 Scientific relevance of the project for the French Energy

Council . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Academic relevance of this research project . . . . . . . . . . . 5

In this chapter we present the objective of our project, that is to say the three di-

mensional investigation on systemic risk in energy derivative markets. Then, we expose

a physicist point of view of systemic risk and explain why the latter seems an interesting

investigation field for statistical physics. Finally, we give our point of view on the scientific

and academic pertinence of the project.

1.1 Objectives

The objective of this research project is a statistical physics approach of systemic risk

occurring in commodities derivative markets. In a usual framework, the study of shock

1



Chapter 1. Issues of this research project

prices arising in a market and propagating in one or more markets is usually considered

according three different dimensions. There is one spatial dimension and two temporal.

The spatial aspect deals with commodities traded simultaneously in different geograph-

ical places. As we are working with future contracts, we need to consider two temporal

dimensions. The first one is the prices changing over time and the second one is the prices

term structure, ie how prices change with maturity.

The recent works in the area of energy commodities show a higher and higher market

integration, involving a most probable systemic risk. Until now, most of the economical

and financial investigations focus on one of the integration [44, 9] at the expense of a

global vision of the three dimensions.

In the last decade physicists paid a lot of attention to economics. They used a wide spec-

trum of methods, models and tools of modern physics as non-linear physics [43], stochastic

process [5], critical phenomena or networks [54, 87, 4]. Due to the large quantities of data

available on commodities, we will consider the problem of systemic risk within the frame-

work of statistical physics and complex systems. This innovative approach will need to

resort to a novel vision of markets mechanisms. Different technical skills will be trans-

ferred from physics to economics in order to extract relevant informations from the three

dimensional space (space, time and maturity).

1.2 Interest of statistical physics for the question of sys-

temic risk

Considering that previous works focus only on one or two dimensions of integration, we

will challenge to consider from a global point of view the propagation of systemic risk.

Physics extends its knowledge to a wide variety of subjects far from the laboratories. An

exhaustive list of the applications of physical models applied far from classical physics area

is not in the scope of this report. As examples, fire forests are studied with percolation

2
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methods [30], traffic flows are understood in terms of hydrodynamical and shock wave

equations, elastic properties of biological membranes or blood cells are well described by

statistical fields theory [25, 31], birds flocks can be described with simple models and

statistical physics [74].

A key question is: Why is there an interest in using statistical physics to approach the

question of systemic risk?. Systemic risk is the sudden manifestation of a dysfunction

occurring at large, eventually global, scale due to a strong markets integration. At a mi-

croscopic scale, the interactions between agents make up a complex network responsible

in part of the strong integration and may lead to non predictable drawup (drawdown)

spreading over a whole economic sector. In other words, one can assists to the emergence

of global cooperative behavior, self organized, resulting from local interactions.

This kind of behaviors appear in phase transitions when a system changes from one to

another state of matter, like the water (liquid phase) turns to ice (solid phase) or vapor

(gaseous phase) as the temperature of the environment is tuned, or when a material dis-

plays suddenly a spontaneous magnetization. As one can observe large collective behavior

in financial markets, the analogy with critical phenomena appears to be a field of inves-

tigations with a very high potential, because statistical physicists have many theoretical

or numerical tools, to investigate the behavior of complex systems and understand the

mechanisms at stake.

If there is an interest for economists in the results of statistical physics, finance appear

to be a very challenging and fascinating field of investigation for physicists. Derivative

markets, and financial markets in general, are open systems, it means that there are some

quantities as money, number of agents or volume of contracts that change in time. These

kind of systems are often called non-equilibrium systems and are at the top of the recent

investigations in statistical physics. Prices are not pure uncorrelated random processes,

they are not normally distributed and at contrary and fat tails and power law distribution.

In conclusion, there are common interests between economy and physics that merge in

3
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studying and understanding through the scope of the science of complex systems.

1.3 Scientific relevance of the project for the French

Energy Council

The last evolutions observed on financial markets raise fears about the associated systemic

risk. Commodities derivative markets are more and more integrated: within the sector of

commodities and also with other markets. Indeed, the price increase of given commodities

(corn, rapeseed, wheat, sugar cane) has been in part associated to the change of energetic

commodities prices. Furthermore, commodities are considered as full fledged assets used in

a diversification purpose by portfolio managers. Consequently, price movements recorded

on some commodities markets could be explained by a priori foreign events like the

decrease of equities or exchange rates. Then, the aggressive behavior of speculators is

invoked to explain some price behavior and could be at the origin of shocks rising from

the merging of markets and propagating to the physical market.

It is crucial to know if energetic markets can be affected by systemic risk and, in such

case, be able to quantify this risk and its characteristics. It is undoubtedly interesting

to focus on systematic risk. If it turns out that a significant part of price fluctuations is

caused by noise, the efficiency of hedging strategies on derivative markets is likely to be

affected. Moreover, from the point of view of regulation, it is important to consider the

quality of the services offered by derivative markets, and to ask how effective they are in

transferring risk among operators and in providing, through futures prices, informative

signals.

4
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Figure 1.1: Left figure: real starling flock. Right figure: three-dimensional numerical
flock [74]. Natural complex pattern and typical density fluctuations can be observed in a
minimal model of interacting agents.

1.4 Academic relevance of this research project

From an academic point of view, the aim of our project is to connect two different fields

of investigation: finance and physics.

Since twenty years, economy raised the interest of an increasing number of physicists.

From the pioneer works based on mechanical equilibrium approach to recent works on

random matrix theory. Such an interest in financial markets can be explained by the fact

that the events, on financial markets, result from the interactions of heterogenous agents

in a non equilibrium environment.

Systemic risk can lead to important defaults due to markets integration. Considering this

situation from a physicist point of view, one can address the question of systemic in the

following way: How a can global collective consensus can emerge from local interactions,

correlations or decisions? Concepts from the phase transitions and critical phenomena,

but also from chaos or non-linear physics, can be very helpful to answer questions about

systemic risks.

Recently, Chaté and his co-workers developed stochastic algorithms aiming at character-

izing the nature and the properties of a spontaneous macroscopic motion raising in an
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assembly of identical agents interacting locally [16, 39]. Despite their minimality, these

models with a reduce number of parameters are full of informations about the motion

of bacteria or complex patterns arising in liquid crystal [18]. Furthermore, still in the

spirit of minimal models done by Chaté and coworkers, a slightly modified model of col-

lective motion has been successfully applied into the description of starlings flocks, that

are known to display a very high degree of complexity (figure 1.1) [74].

If these minimal models are fruitful to understand the role of simple mechanisms in the

emergence of complex patterns or information transfer, like in biology, dynamical systems

and also in economy, we hope in the long run, to build a new model capturing the main

features of co-movements in commodities derivative markets.
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In this chapter, we present the characteristics of our data. The first section is devoted

to a description of the selected markets and the economic intuition which has motivated

the choice of fourteen markets corresponding to three different sectors: energy, agriculture

and financial assets. In the second section we present the database and technical skills

related to the building of prices’ curves. The third section gives a brief overview ot the
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time series’behavior. The last section concerns the seasonality of petroleum products and

the attempt to identify periodic patterns in the datas.

2.1 Derivatives markets selected

In this section we present the markets selected for the empirical study, namely energy,

agriculture and financial assets.

On the basis of the Futures Industry Association’s monthly volume reports, we retained

those contracts characterized by the largest transaction volumes. The choice of these three

sectors is motivated by the last observations of financial markets evolutions. Commodities

derivative are more and more integrated: within the sector of commodities and also with

other markets. Furthermore, commodities are considered as full fledged assets used in a

diversification purpose by portfolio managers. Consequently, the price increase of given

commodities has been in part associated to the change of energy commodities prices or

could be explained by a priori foreign events like the decrease of equities or exchange rates.

The choice of the different markets within the three sectors allow us to study different

kinds of relationships, that is to say the upstream/downstream phases of the industrial

process in the petroleum field as between the soy oil and soy bean futures contracts.

2.1.1 Energy markets

For this report, we collected data on seven 1 energy markets: more precisely, we choose

three futures contracts on crude oil and four futures contracts on petroleum products.

The three futures contracts on crude oil correspond to:

• the American light sweet crude oil negotiated in the United States, on the Chicago

Mercantile Exchange Group (formerly the New York Mercantile Exchange), which

1data on seven markets have been collected, but due to a too short historical record or unusable
recontructed term structure three markets (LTC, LHO and RBOB) have not been considered for the
empirical investigation.
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is referred to as the NCL in this report. As illustrated by figure 2.1, this futures

contract is, by far, the most widely traded commodity contract in the world since

several years.

• the European light sweet crude oil negotiated in Europe, on the InterContinental

Exchange, referred to as the LLC. This futures contract is usually the second one,

worldwide, as far as its transaction volumes are concerned.

• the American light sweet crude oil negotiated in Europe, on the InterContinental

Exchange, which is referred to as the LTC 2.

As far as the qualities are concerned, we have data on the American crude, usually called

the WTI (West Texas Intermediate) and the European one, usually called the Brent.

These two qualities are negotiated in two different geographic places. Consequently, the

price differential between these two products should reflect both quality differential and

transportation costs 3.

These crude oil markets being the most important - in the commodity field - worldwide,

they are characterized by the presence of long term expiration dates: up to 9 years in the

American market.

We also retain the main futures contracts on petroleum products, namely:

• the American heating oil negotiated in the United States, on the CME Group, which

is called: NHO in this report

• the American gasoline in the United States, on the CME Group, which is called:

RBOB in this report

2This contract, which was recently launched in Europe, immediately encountered a huge success. It
soon became the third commodity futures contract exchanged worldwide. We thus have two different
qualities of crude oil and two transactions places.

3The third contract has the American crude oil as its underlying asset. It is however negotiated in
Europe. Thus only difference between the NCL and the LTC futures contracts lies in the transaction
place and we expect that the price differentials between these two contracts will be very small (in other
words, the links between these contracts should be strong.)
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• the European heating oil negotiated in Europe, on the ICE, namely the LHO

• the European gas oil negotiated in Europe,on the ICE, namely the LLE.

Finally, we have completed the energy sector with two natural gas:

• the European natural gas negociated in Europe on the ICE, namely the LNG.

• the American natural gas negociated on the CME group, namely the NNG.

Thus this database gives us the possibility to study several kinds of relationships, that is

to say:

• the upstream and downstream phases of the industrial process in the petroleum

field, in Europe and in the United States

• futures contracts corresponding to different qualities and negotiated in different

geographical places

2.1.2 Agricultural markets

The recent develoment of biofuel rise our interest as it could introduce strong connec-

tions between soft commodities and petroleum products. We selected four significative

agricultural markets:

• the Corn futures contract negociated on the CBOT, namely the CC

• the Wheat futures contract negociated on the CBOT, namely the CW

• the Soy Bean futures contract negociated on the CBOT, namely the CS

• the Soy Oil futures contracts negociated on the CBOT, namely the CBO

The two former futures contracts, namely CS and CBO, give us the ability to study the

upstream/downstream phases of the industrial process as the link between biofuel and

other agricultural markets.
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2.1.3 Financial assets

We have completed our databse with three financial assets:

• the Eurodollar interest rate futures contract IED

• the Gold, considered as a safety asset NGC

• the Exange rate, Dollar/Euro CEU

• the Mini S&P500 ISM

2.2 Presentation of the database

We selected the futures markets characterized by the most important transaction volumes

in three different sectors4, namely energy, agriculture and financial assets. We used two

databases, Datastream and Reuters, in order to collect on a daily basis, settlement prices,

opening prices, open interests and transaction volumes for each market. In order to

concentrate on the methodology of the empirical study we limited our empirical work on

settlement prices in this report. The original time series gave us the data through the

life of a specific futures contract. For example we obtain, for a contract having a nine

years maturity, a time series beginning at the birth date of the contracts and finishing at

its death. As one of the aims of our study is the analysis of prices behavior according to

the maturity of the futures contracts, we had to arrange these futures prices in order to

reconstitute, for each market, daily term structures of futures prices. The term structure

or prices curve indeed represents the relationship, at a specific date, between futures

prices having different delivery dates. So we reconstructed the delivery calendars of all

the futures contracts, on the seven markets. Then we determined, month by month, when

a specific contract has, for example, a one- or a two-month maturity, and we identified the

4Source: Futures Industry Association, Monthly volumes reports
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Figure 2.1: Energy Futures and Options Worldwide

day when the contracts falls from the two- to the one-month maturities, from the three-

to the two-month maturities, etc. This allowed us to obtain daily prices curves for all the

markets.

With such a database, one of the difficulties comes from the fact that for one underlying

asset, the beginning of the time series frequently contains less information than the end.

In other words, the prices curve is shorter at the beginning of the time period. Indeed, as

time goes on, the maturities of the futures contracts usually rise on a derivative market.

The growth in the transaction volumes of existing contracts induces the introduction of

new delivery dates. Thus, in order to keep sufficiently long time periods for our analyses,

and in order to have continuous time series, we had to withdraw some maturities from

12
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the database. Once this selection has been done, our database still contains more than

655000 prices.

Figure 2.2 summarizes the main characteristics of our database, and the data available,

once the term structures reconstituted. First remark, the periods are quite different for

each market. Datastream actually does not give the possibility to reconstitute very long

time series, and the length of the available time series changes with the market. So the

longer time series displayed in table 2.2 (for the American crude oil, for example) rely on

databases previously collected by the authors of this report.

Last remark, the American gasoline negotiated in the United States, namely the RBOB

does not appear in this table. We indeed find out that once the term structures were

reconstructed, the gasoline data where not utilizable, as illustrated by figure 2.3. In this

figure, the black line represents the one-month maturity (F1M), whereas the dotted line

stands for the twelve months’ maturity (F12M ). The abscissa represents the time period,

between 02/2007 and 09/2009. A quick glance at this figure shows that they are sudden

drops and spikes in the two series of futures prices. These variations also appear for the

other maturities and can not be explained by economic events. We thus decide to neglect

these data.

2.3 A brief overview of the time series

Figure 2.4 gives an overview of the behavior of the crude oil futures prices for the LLC,

that is to say, for the Brent, between 2000 and 2009. Two maturities were selected : one

month (black line) and eighteen months. The figure exhibits first of all a huge change in

the prices level, in 2004−2009: they indeed range from a lower level of 40$/b before 2004

to the highest level of 150$/b. It also gives evidence of quite a dramatic change in the

prices’ volatility, which clearly increases since 2004. Finally, it shows that whereas the

one-month maturity was usually higher, before 2004, than the eighteen months maturity,

13



Chapter 2. Data

Figure 2.2: Main characteristics of the collected datas. The column "mnemonic” refers to
the label of the futures contract in Datastream, and the column entitled "Place" indicates
the geographic localization of transactions. The column "maturities" indicates the last
maturity available.
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Figure 2.3: Temporal evolution of the maturities 1 and 12 months

this hierarchy seems to change in the end of the period.

We further explored this question trough the calculation of futures prices bases 5 as

illustrated by figure 2.5. The figure 2.5 (b) represents, for example, two temporal bases

for the American crude oil negotiated in the United States, the so-called WTI, between

1988 and 2009. The dotted line stands for the relationship between the one- and the

two-month maturities, that is to say:

5The basis considered in this report is a temporal basis: it represents the difference between the spot
and futures prices. More precisely, we expressed the temporal bases in percentage, in order to avoid size
order effects. When the basis is positive, the market is in backwardation; otherwise, it is in contango.
Lastly, as we did not have time series for spot prices, we choose to approximate this variable with the
one-month futures price. Such an approximation is very frequent in empirical studies on commodity
markets.
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Figure 2.4: Temporal evolution of the maturities 1 and 18 months

F2M − F1M

F1M
,

whereas the black line represent the basis between the two- and the three-months matu-

rities, namely:
F3M − F2M

F2M
,

As the differences between the two lines are not really easy to see on figure 2.5 (b),

let us just underline that, during this very long period (almost 21 years), the basis was

most of the time positive. In other words, the market was in backwardation. This is a

well-known characteristic of the crude oil market. However, since a few months, it seems

that backwardation (i.e. positive bases) might not be the rule anymore. Moreover, a

very high contango (i.e. negative basis) distinguishes the very end of the period. This
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spike is all the more surprising that, in derivative markets, arbitrage operations between

the physical and paper markets should impose a limit on contango situation, this limit

corresponding to the storage costs of the commodity. Thus, either there was a storage

difficulty in the physical market at that date, or there is a shock that must be explained

by another phenomenon.

Figure 2.6 presents the time evolution of the prices of the first (black lines) and the late

maturity (dotted lines) for three different futures contracts, namely the crude oil negoti-

ated on the New York Mercantile Exchange (NCL), the corn (CC ) and the mini contract

on the S&P500 (ISM ), both of them traded on the CME Group. The illustration shows

that our time period covers one crisis for the commodities, highlighted by a significant

price’s rise in the crude oil (NCL) and in the gold (CC ) which does not appear for the

financial asset (ISM ). The similarity between the commodities price’s behavior is at the

core of the debate related to the possible impact of institutional investors on the prices

of commodities.

The black and dotted lines also give an illustration on one of the most important features

of the commodity prices curve’s dynamic: the differences in the behavior of first nearby

contracts and deferred contracts. The movements in the price of the prompt contracts

are larger than the other ones. This results in a decreasing pattern of volatilities along

the prices curve. Indeed, the variance of futures prices and the correlation between the

nearest and subsequent futures prices decline with maturity. This phenomenon is called

the Samuelson effect. For the financial asset (figure 2.6 (c) and its inset), the two lines are

almost mixed up, while we can clearly observe a backwardation for the energy commodity

(figure 2.6 (a)) and a contango for the agricultural commodity (figure 2.6 (b)).

A more precise insight on the prices behavior at the end of the period is illustrated by the

figure 2.5 (c). This figure indeed represents the same bases, on a shorter period, from 2000

to 2009. Now the differences between the dark and the dotted lines appear clearly. Thus

the figure gives an illustration of one of the most important features of the commodity
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Figure 2.6: Time evolution of the prices of the first (black lines) and last maturities
(dotted lines) for futures contracts representative of each sector between 1998 and 2009.
Figure (a) represents the evolution of crude oil prices (NCL), Figure (b) exhibits that
of corn prices (CC ), whereasFigure (c) is devoted to the S&P index (ISM ). The inset in
Figure (c) represents a smaller time window where the two lines are easily distinguishable.

prices curve’s dynamic: the difference between the price behavior of first nearby contracts

and deferred contracts 6. The movements in the prices of the prompt contracts are larger

than the other ones. This results in a decreasing pattern of volatilities along the prices

curve. Indeed, the variance of futures prices and the correlation between the nearest and

subsequent futures prices decline with maturity. This phenomenon is usually called the

Samuelson effect. Intuitively, it happens because a shock affecting the nearby contract

price has an impact on succeeding prices that decreases as maturity increases [80]. As

futures contracts reach their expiration date, they react much stronger to information

shocks, due to the ultimate convergence of futures prices to spot prices upon maturity.

These price disturbances influencing mostly the short-term part of the curve are due to

the physical market, and to demand and supply shocks. The Samuelson effect seems how-

ever particularly important in the end of our observation period, suggesting that there

are quite a lot of noises (or shocks) affecting the one-month time series.

Lastly, figures 2.5 (a) and 2.5 (c) display two temporal bases (respectively three-month

6We obtained almost exactly the same figure for the european crude oil market.
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minus two-month over two-month and two-month minus one-month over one-month) for

the European gas oil between 2000 and 2007. The same general comments than those

already proposed for the crude oil can be made for this petroleum product: backwardation

is more frequent than contango, except for the end of the period. Moreover, short term

prices are more volatile.

This brief overview of the futures prices behavior lead us to think, first that it could be in-

teresting to make a separation between the period before and after 2004-2005 and second,

that a separate analysis of backwardation and contango situations could be fruitful.

2.4 The seasonality of petroleum products

Before proceeding with the empirical tests, we first took the time to study the question of

the seasonality of petroleum products. The presence of such a phenomenon indeed might

influence the futures pricesb́ehavior in two ways: first, it can create autocorrelations in

the time series; second, it is frequently associated with the sign of the temporal basis,

namely the difference between the spot and the futures prices.

In this paragraph, we will first recall what literature says about the seasonality of energy

commodities, and second, we will present our attempt to identify seasonal patterns in the

extracted time series.

2.4.1 What literature says about seasonality

In the energy field, some commodities are known for showing seasonal fluctuations: elec-

tricity, natural gas, heating oil and gasoline / gas oil (as we did not collect, for this report,

data on natural gas and electricity, we only mention them here for the record). This sea-

sonality is due to changing consumption as a result of weather patterns. Usually, it is not

supposed to influence the crude oil markets.
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As far as seasonality 7 is concerned, heating oil and gas oil (and/or gasoline) markets

usually move in opposite ways. In both cases, there is a low and a high season. However,

the high season for heating oil corresponds to the low season for gas oil and vice and

versa. In the case of gasoline, the high consumption period corresponds to the holidays

and, more specifically to the summer, whereas in the case of heating oil, prices spikes

essentially take place in winter. Since the turn of the century however, a second period

of high consumption for heating oil takes places in the summer, for air-conditioning pur-

poses. This is especially true for the United States. Thus a lot of authors recognize the

presence of a seasonality effect in petroleum products, with one or two periods of high

consumption, according to the observation period and to the place of consumption.

Another interest aspect of the seasonality is that it creates a specific behavior of their

temporal bases. The heating oil market is frequently in backwardation from December to

March, whereas the gasoline market in characterized by the presence of inverse carrying

charges from June to November. Moreover the two products are supposed to have oppo-

site behavior: when one of them is in contango, the other one is in backwardation. This

is due to the fact that the refining process is a joint production process 8.

7For more information on the seasonality of petroleum products, see for example D. Pilipovic, 2007,
Energy risk : valuing and managing energy derivatives, 512 p, Mac Graw [70].

8For more details on these points, see for example D. Lautier, 2000, La structure par terme des prix des
commodités : analyse théorique et applications au marché pétrolier, Thèse, Université Paris Dauphine
[46], or Edwards F.R., Canters M .S., 1995, The Collapse of Metallgesellschaft : unhedgeable risks, poor
hedging strategy, or just bad luck ?, The journal of futures markets, 15(3), 211-264 [26].
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2.4.2 An attempt to identify the seasonal patterns

Our first attempt to identify the seasonal patterns 9 in the data consisted in a graphical

analysis. We examined the heating oil and gas oil data, year by year, in order to find

evidence of a seasonal patterns. We first found that it was probably possible to identify, for

each market, a one-period seasonality, with a high and a low season. However these high

and low seasons slightly changed each year. We also try to compute the temporal basis

for this petroleum products, in order to make sure that the high seasons corresponded

to backwardation whereas the low season exhibited contangos. The results however were

not convincing. We thus proceeded with a more formal method: the frequency domain

analysis.

In this paragraph, we first briefly expose this method. We then present its applications

to our data. Lastly, we conclude.

Frequency domain analysis

The frequency domain representation, or Discrete Fourier Transform (DTF) is a math-

ematical procedure that transforms a discrete function into another, which is called the

frequency domain representation. The latter provides a decomposition in frequencies,

and their associated strength, rather than a decomposition in time. While the original

signal expresses the value of the function f(t) at the time t, the frequency domain gives

the strength of each frequency which is present in the original time series. When a spe-

cific pattern occurs fairly regularly in the signal, the DTF gives the value as well as the

9Two main methods are usually used to take account of seasonal fluctuations. The first is to de-

seasonalise the data by, for example, a moving average method before estimation. The second is to use
particular dummy variables during estimation. The first method can be criticized on several counts.
Firstly, the moving averages are based on an overlapping process that creates additional autocorrelation.
Secondly, cumulating averaging is a smoothing device and may tend to obscure some of the finer move-
ments in the series we are considering. The second method amounts to enhance the information associated
to a specific variable and to specify, for each price, its season. For more details on these methods, see for
example Introductory econometrics M.B. Stewart and K.F.Wallis, Basil Blackwell, second edition, 1990,
337 p [85].
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Figure 2.7: Frequency domain representation. Figure (a) plot of the function f(t) =
cos (ω1t) + cos (ω2t) + cos (ω3t). Figure (b) discrete fourier transform of f(t).

strength of this repeated pattern.

The figure 2.7 gives an illustration of this method. On 2.7 (a), we plot the function:

f(t) = cos (ω1t) + cos (ω2t) + cos (ω3t) , (2.1)

where the ωi are the frequencies and the periods Ti are given by:

Ti =
ωi

2π
(2.2)

In this example, the signal comes from a mathematical periodic function. The graphic

representation of this signal shows that there are three periods: a long one, of duration

6, a shorter one, of duration 3, and the shortest, of duration 2. The figure 2.7 (b) gives

the frequency representation of this signal. We can observe three peaks localized at a

characteristic period of the original signal. These three peaks confirm what can be seen

on figure 2.7 (a): there are three distinct patters repeated with periods T1, T2 and T3.
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In the case of empirical data, however, the interpretation of the original signal is far from

obvious. The data are affected by noises and finding periodic patterns is not simple.

Discrete Fourier Transform of petroleum prices

In our attempt to identify the seasonal pattern of petroleum prices, we decided to use

a discrete fourier transform for two different markets: crude oil and heating oil. The

first of these two markets was used as a reference precisely because it is not supposed to

exhibit a cyclical behavior. We decided to use three months futures prices in order to

avoid the presence of potential noises in the nearest contracts. The figure 2.8 presents the

results obtained on these two markets. The left side of the figure pictures the behavior

of the futures prices on the observation period. The right side gives the result of the

transformation.

The interpretation of the results is by far not straightforward. The two series exhibit

quite similar patterns, that is to say, we do not find evidence of a specific cyclical behavior

in the heating oil data, especially if we compare them with the crude oil data. Several

reasons can explain such a result. First, our observation period on heating oil starts in

1998, namely roughly at the date when the consumption of this petroleum product for

air-conditioning purposes really began. Maybe the presence of this second period of high

consumption smoothes the prices behavior, and makes it more difficult to identify the

cyclical behavior. Another possible reason is that for these markets, even if we have 4000

(for the heating oil) and 8000 (for the crude oil) daily observations, the data are not

sufficiently abundant to give evidence of a seasonal pattern. These results leaded us to

conclude that we should not try to take into account the seasonality of our data.

We briefly remind the main features of this chapter. Firstly we built a database which

includes a crisis affecting ,at least, the energy and agricultural markets. Then, we detected

a similar prices’s behavior of the commodities, which is not observed for the financial

assets. Finally, we were not able to give an evidence of the seasonality of the petroleum
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Figure 2.8: Temporal series of the 3 month maturity price F3M (t) (left panel) and discrete
fourier transform (right panel).

products. Consequently, the question of the seasonality will not been taken into account

in our analysis.
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In this chapter, we present a set of empirical facts emerging from the statistical anal-

ysis of prices changes. The chapter is presented in the spirit of econophysics. The main

reason is to ensure the coherence of the second part of the chapter. Indeed, the results

presented here have been submitted to a journal of physics. Furthermore, we aim to make

familiar some concepts of econophysics and introduce the reader to the point of view of

physicists on financial markets.

The first section presents stylized facts, that is to say, empirical statistical properties ob-

served for most of the financial markets independently of their nature (stocks, indexes,

interest rates, futures...). The main stylized facts are the non gaussianity, the slow de-

creasing of the autocorrelation function of absolute returns or the volatility clustering.

The second section gives results on the statistical properties of derivatives. The main

contribution of this work is to study the statistical properties of derivatives when the

maturity is considered as a variable. Such a work has never been presented neither in the

financial literature on a such large scale nor in econophysics.

3.1 ⋆Introduction

In the past twenty years, physicists have made several investigations in the fields of social

sciences and economics. Their interest in economic systems was risen from the strong

analogy between financial markets and complex systems. Both indeed are open systems,

far from equilibrium, with macroscopic properties emerging from sub-units interacting

non trivially. Therefore, numerous concepts and methods, such as scaling, universality,
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chaos, agent-based models, have been successfully used to perform empirical investiga-

tions and develop financial markets’ modeling ([7],[58], [51],[56], [57], [49], [14], [13]).

Among all studies, several addressed the question of statistical properties of market prices’

fluctuations. It has been shown that irrespective of the particular asset under considera-

tion, prices’ fluctuations distribution is characterized by a fat tail with an exponent close

to 3 ([33], [29], [35], [36],[50]). The majority of these studies provide results for stocks or

indexes but there is a lack of information about commodities in the econophysics litera-

ture. Moreover, as these studies mainly deal with spot prices, an important and non trivial

temporal aspect of derivative markets is missing: the investigation of futures prices.

Commodity markets have experienced important evolutions in the last decades: high

volatility in the prices, rise in transaction volumes, stronger presence of financial in-

vestors seeking for diversification. The introduction of futures contracts with longer de-

livery dates accompanied this evolution. It confirmed the necessity to understand and

manage the term structure of commodity prices, that is to say the relationship at a date

t, between futures contract having different maturities M . Thus term structure models

for commodity prices have been developed and improved ([8], [81], [22], among others).

Inspired by contingent claim valuation models previously built for interest rates ([88]),

they were essentially gaussian. Such developments induce two questions. First, are gaus-

sian assumptions suited for commodity prices, especially when long-term delivery dates

are concerned? In other words, do the short- and long-term futures prices behave alike?

Second, do commodities behave like other derivative assets?

3.2 ⋆Prices fluctuations

In order to examine the statistical properties of price’s fluctuations on the selected mar-

kets, we computed the prices returns r(t) by taking the logarithm difference between two
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Figure 3.1: Wheat and Light crude oil futures prices and returns corresponding to different
delivery dates, 1998-2009. (a) Wheat prices for the maturities: 3 months (dark), 7 months
(dark gray) and 15 months (gray); (b) Light crude oil prices for the maturities: 1 (dark) 24
(dark gray) and 84 months (gray); (c) and (d) corresponding daily returns with maturities
increasing from the bottom to the top. Time is given in records.
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consecutive prices P (t):

r (t) =
ln (P (t))− ln (P (t−∆t))

∆t
, (3.1)

where ∆t = 1 day, except during week-ends or days-off. In order to avoid bias in the

statistics, returns are not computed when ∆t exceeds three days. Previous studies on

prices returns in financial markets ([24], [89]) alternatively used normalized or simple

returns. After having checked that the results do not change with one or the other

method, we retained the one defined by 3.1.

The comparison of prices’ returns for different delivery dates, illustrated by Figures 3.1(c)

and (d), shows that all time series have stochastic fluctuations around zero but also

that the level of the fluctuations changes significantly with the maturity. This is a main

feature of the term structures: the short maturities are affected by strong fluctuations

while the long-term prices are less volatile. Thus the variance of the prices diminishes

with the maturity. This decreasing pattern is usually referred to as the Samuelson effect

([80]). Intuitively, it happens because a shock affecting the nearby contract price has

an impact on succeeding prices that decreases as maturity increases. Indeed, as futures

contracts reach their expiration date, they react much stronger to information shocks,

due to the ultimate convergence of futures prices to spot prices upon maturity. These

price disturbances influencing mostly the short-term part of the curve are due to the spot

market.

Numerous works ([1], [63] and [28]) provided empirical support for this hypothesis for a

large number of commodities and financial assets. In the case of commodities, in [15]

and [23], the authors observed that the Samuelson effect depends on the storage costs.

More precisely, when the cost of storage is high, relatively little transmission of shocks

via inventory occur across periods. Futures price’s volatility consequently declines rapidly

with the maturity. Moreover, there is a modified Samuelson effect in the case of seasonal

commodities. Lastly, as far as the interest rates are concerned, the Samuelson effect can
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be in conflict with the monetary policy, especially on the shortest maturities.

3.3 ⋆Stylized facts

Stylized facts are empirical facts obtained by taking a common denominator among the

properties of different markets. They are qualitative properties but enough constraining

that is not easy to reproduce and understand them even with ad hoc stochastic mod-

els. In this way, there is a gain in generality but also a loss in precision in the process

under examination but purpose of such properties is to understand universal underlying

mechanism rather than precise prediction of the statements of markets.

3.3.1 ⋆Non gaussianity and heavy tails

-6 -4 -2 0 2 4 6

0,001

0,01

0,1

Crude Oil
Gaussian

(a)

-10 0 10
0,001

0,01

0,1

1
Eurodollar
Gaussian

(b)

Figure 3.2: Normalized histograms of logarithm daily returns for the Light Sweet Crude
Oil (a) and the Eurodollar interest rates (b). The red line corresponds to the gaussian
distribution with same mean and standard distribution.

One of the most important empirical finding concerns the probability distribution
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function of returns. It is well known established, since the work of Mandelbrot in the

early sixties ([52]), that returns’ distribution diverges from normal random variations.

More precisely, the tails of the distribution seem to follow a Pareto like distribution with

exponents between two and five. Such values of the tail exponents exclude stable laws

with infinite variance and the normal distribution. In the next section, we will study with

more details the values of the tails for commodities and interest rates and discuss the

behavior of the exponents as function of the maturity.

On Figure 3.2, we illustrate the non gaussian behavior of the Light Sweet Crude Oil (a)

and Eurodollar (b). We computed the normalized histograms of the normalized returns

at maturity one month. In both case, we can see that the tails are far from the normal

distribution (red line) and extreme events can arise with a probabilitty higher than in the

gaussian case.

3.3.2 ⋆Absence of temporal correlation

It is also interesting to consider the temporal autocorrelation of assets or commodities

returns. This function is defined its simplest way as:

C(τ) =< r(t)r(t+ τ) >t, (3.2)

where τ is the lag between two dates and < . >t denotes a temporal average. In all the

empirical studies the autocorrelation function is a fast decaying function usually charac-

terized by a correlation time τc smaller than one day. Using high-frequency datas, it is

possible to detect correlation time of the order of few trading minutes. Beyond this time,

the effects of the microstructure become negligible. The most common explanation for

the absence of correlation invokes the principe of no arbitrage of liquid markets. Indeed,

if such correlations exist they would be easily detectable and could be used by agents to

build a strategy that allows, in average, to win money. However, such strategies would
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mechanically destroy these correlations at least for a typical time scale greater than the

reaction time of the market (of the order of few minutes) and bring back the market to

equilibrium. While such arguments are usually used to explain the absence of temporal

correlations, they must be carefully invoked and require fine statistical analysis.

We present this result on the figure 3.3(a) for the Light Sweet Crude Oil. We can easily

notice the fast decay of the autocorrelation function, since the lag is greater than one day,

the level of the correlations fluctuate around zero.

3.3.3 ⋆Long-range dependency
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Figure 3.3: Autocorrelation function for the Light Sweet Crude Oil returns (a) and abso-
lute returns (b). The red line indicates the power law with an exponent −0.26.

As we have explained previously, the daily logarithm price changes are not correlated

in time. This result is not true for absolute or squared price changes. Various empirical

studies indicate that the autocorrelation of absolute (or squared) returns decrease very
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slowly as:

C(τ) ∼ τ−α (3.3)

with the exponent α between 0.2 and 0.4. This power-law behavior is often considered

as the sign of long-range memory dependance and indicates that there is no typical time

scale associated to the correlations.

On the figure 3.3 we present the autocorrelation for the absolute returns for the Light

Sweet Crude Oil at maturity one month. The level of correlation decreases very slowly.

The last decade is well described by a power law function with an exponent −0.26 in

agreement with the boundaries 0.2 and 0.4.

3.3.4 ⋆Volatility clustering
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Figure 3.4: Logarithm daily normalized returns for the Light Sweet Crude Oil (a) and
the Eurodollar interest rates (b). The dashed red ellipses indicate burst of activity. The
time is in trading days.

Another universal property of financial markets is the so-called volatility clustering.
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This effect is closely related to the long-range time dependency described above. It means

that we can distinguish on financial time series some periods with high volatility from

others with small volatility. In other words there are clusters of high volatility and clusters

with small volatility. This clustering phenomena is due to the memory of absolute returns.

A large price movement is followed by another large price movement (but not necessarily

in the same direction) and it is the same for small price changing. Furthermore, the

absence of typical time scale implies that the period of high (resp. small) volatility does

not have a typical time too.

We depict on figure 3.4 (a) and (b) typical bursts of volatility. In particular, these periods

of strong activity are easily detectable for the Eurodollar (b).

3.4 ⋆Statistical properties of derivatives

In this section we characterize the statistical properties of the stochastic processes un-

derlying the returns of commodities and financial assets in the maturity dimension. We

indeed compute the mean absolute returns, the variance, the skewness, the kurtosis of the

daily logarithm prices changes, and we examine the tails of the distribution .

3.4.1 ⋆Mean absolute returns

As the first moment strongly fluctuates around zero, we did not observe any specific

behavior of the mean of the returns. Thus we started our statistical analysis with the

mean of the absolute daily returns. The latter is defined as follows:

〈|r|〉i =
1

T

T∑

i=1

|ri|, (3.4)

where T denotes the total number of records and ri the return at time i.

Figures 3.5(a) and (b) reproduce the behavior of the mean absolute returns as a function
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Figure 3.5: Mean absolute returns as a function of the maturity. Left panel: Com-
modities following a power law function with exponents (from bottom to top) αmean =
0.2 , 0.175 , 0.095. The circles stand for all commodities having an exponent close to
0.175. For the sake of simplicity all curves have been shifted to the same origin. The axes
are in log scale. Right panel: Mean absolute returns for the futures contracts on interest
rates, Gold, and Soy bean. The abscissa is in log scale.

of the maturity M . A decreasing pattern with the transactions’ horizon is observed for

commodities, which reflects the Samuelson effect. Among financial assets, Gold exhibits

the flattest curve. Conversely, interest rates are characterized by the presence of a bell

curve. The short-term fluctuations are lower than the mid-term ones: the monetary pol-

icy has a stabilizing influence on interest rates, and influences mainly the short-term part

of the curve. It contradicts the Samuelson effect up to 12 months.Then, the decreasing

pattern observed for commodities appears again (Fig. 3.5(b)).

Another interesting result is that the fluctuations of commodity prices can be well de-

scribed by a power law, as suggested by Figure 3.5(a), except for Soy bean. The latter, as

well as Gold, follows a linear relation with the maturity. Up to now, we did not identify

why the Soy bean stands apart. As far as Gold is concerned, as previously mentioned,
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this asset does not really belong to the class of commodities.

Most of the commodities futures contracts under consideration have thus power law de-

creasing mean returns. Moreover, in their majority, the commodities follow a well defined

scaling behavior |r| ∼ M−αmean with a median value αmean close to 0.175 ± 0.012. The

American Natural gas follows another power law. In [48] the authors observed that futures

prices in this market have a dynamics in the maturity space which is different from that

observed in other markets. More precisely, the cross-correlations between the different

maturities are subject to frequent and important destabilizations.

Finally, a crossover appears, after the 24th month, on Figure 3.5(a): at this point, the

power law does not hold any more, and the mean fluctuations decrease much more slowly.

This phenomenon is observed on two markets: the American Light crude oil and Nat-

ural gas. This crossover might result from the presence of preferred habitats ([64]) for

operators in commodity derivative markets, leading to different behavior of futures prices

according to the range of maturity they belong to ([47]).

The presence of a power law for commodities can be interpreted as the signature of com-

mon underlying processes driving the dynamics of prices movements : temporal arbitrage

between maturities and the Samuelson effect are two good candidates.

3.4.2 ⋆Variance

The analysis of the variance of the daily returns fluctuations, σ2
r , reinforces the conclusions

reached with mean returns. We compute the variance as follows:

σ2
r =

1

T

T∑

i=1

(ri− < r >i)
2 (3.5)

Figures 3.6(a) and (b) present our results. As was the case for the absolute mean returns,

we observe a decreasing pattern of the fluctuations, reminiscent of the Samuelson effect.

Let us remind that the mean absolute returns and the fluctuations of returns are both
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Figure 3.6: Variance as a function of the maturity. Left panel: commodities following a
power law function with exponents (from bottom to top) αvar = 0.333 , 0.175 , 0.181.
The circles stand for all commodities having an exponent close to 0.175. For the sake of
simplicity all curves have been shifted to the same origin and the abscissa is in log scale.
The axes are in log scale. Right panel: futures contracts on financial assets.

proxies for the volatility. However, as illustrated by Figure 3.6(a), their behavior can differ

qualitatively. This is particularly true for Soy bean, whose fluctuations exhibit the same

exponent than other commodities. Table 2 exhibits the values of the exponents of the

power laws obtained for commodities, for the mean absolute returns and the variances as

well as the errors ∆ on these measures. Whatever the commodity is concerned, the latter

are low. Now the distinction between the financial underlying assets and the commodities

is very clear. Each of these category exhibits homogeneous behavior.
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Table 3.1: Exponents of the power law function for the mean and variance of the returns.

Futures αmean ∆αmean ασ2 ∆ασ2

Soy oil 0.095 0.004 0.181 0.008
Soy bean no no 0.267 0.017
Wheat 0.198 0.007 0.332 0.021
Light crude 0.179 0.001 0.362 0.002
Brent crude 0.160 0.002 0.315 0.003
Heating oil 0.188 0.004 0.353 0.013
Gasoil 0.163 0.003 0.321 0.002
Nat. gas (Eu) 0.2 0.005 0.333 0.02
Nat. gas (Us) 0.387 0.005 0.664 0.022

3.4.3 ⋆Skewness

Let us now turn to the third moment of the distribution. We compute the skewness λ3

of the returns as follows:

λ3 =
1

T

T∑

i=1

(ri− < r >i)
3

σ3
r

(3.6)

This measure gives the level of asymmetry of the probability distribution of a random

variable. A negative (positive) skewness indicates that the values are distributed to the

right (left) of the mean.

Figure 3.7 provides the results for agricultural products, energy products, interest rates

and Gold. Interest rates exhibit a quite homogeneous behavior, with a negative skewness

for the shortest maturities, which turns into a positive one for maturities around one year,

and then exhibits a tendency toward zero. Thus, fluctuations are usually high for the

short maturities, low for the middle ones, whereas the distribution becomes symmetrical

for longer maturities. As far as the other assets are concerned, the behavior of the

skewness with the maturity is generally more regular: it is positive and decreases with

the maturity for Soy oil, Soy bean, the two natural gases and Gold. Conversely it is

negative and increases with the delivery dates for the group of petroleum products. Thus,

the products characterized by a very frequent contango seem to exhibit positive skewness,
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Figure 3.7: Skewness as a function of the maturity. (a) agricultural products; (b) energy
sector; (c) interest rates; (d) gold. The abscissae of figures (b), (c) and (d) are in log
scale.

whereas backwardated markets appear to be associated with negative skewness.

Such a result is consistent with the fact that prices’ fluctuations are not the same in

contango and backwardation, especially in commodity markets. Such markets indeed
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are characterized by a positive constraint on inventory, which does not hold for financial

assets used for investment purposes. When stocks are rare, in backwardation, arbitrage

operations are all the more unlikely to happen than the shortage is pronounced. In such

a case, the level of prices’ spread is solely determined by the spot price the operators

are willing to pay in order to immediately obtain the merchandise. Moreover, because

inventories are not sufficiently abundant to absorb the fluctuations in the demand, the spot

price is volatile, and so is the prices’ spread. Thus a longer left tail for the distribution,

especially for shorter maturities, is not a surprise. The positivity constraint disappears

in contango, when stocks are abundant. In such a case, prices’ spreads are stable and,

under the pressure of arbitrage operations, they are limited to the level of storage costs.

A positive skewness is thus probable.

Lastly, compared with the other assets, Gold exhibits a specific behavior: the skewness

is positive, and decreasing, which could have been expected for a market which is almost

always in contango.

3.4.4 ⋆Kurtosis

The kurtosis of the distribution λ4 was computed in the following way:

λ4 =
1

T

T∑

i=1

(ri− < r >i)
4

σ4
r

(3.7)

Figure 3.8 displays our results. They are in line with our comments on skewness, and

more precisely with the observation that there is a quite homogeneous behavior of the

distribution among one class of assets. Moreover, the fourth moment of the distribution

is generally high, whatever the asset is considered. The degree of peakedness of the

distribution is however especially important for the two natural gases and the short-term

maturities of interest rates. Thus for these markets, a large part of the return’s variance

is due to infrequent extreme deviations.
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As far as interest rates are concerned, the presence of few large deviations in the returns

is consistent with isolated actions of the monetary authorities. As for natural gases, while

the high kurtosis on short-term maturities is probably due to storage difficulties, such an

explanation does not hold for the long-term maturities on the American gas. In this case,

the lack of stability of this market, previously mentioned, can be invoked.

3.5 ⋆Tail exponent term structure

In this section we address the question of whether the scaling properties of returns prob-

ability distributions change with the maturity: in other words, is there a term structure

of tail exponents for derivatives? As mentioned previously, if stocks and foreign exchange

markets have received a lot of attention, such was not the case for commodities and futures

([3], [76], [77], [78], [79]). Moreover, except for interest rates, the maturity dimension has

been omitted ([84], [86], [12], [10], [11], [24]).

One of the most frequent empirical findings concerning price fluctuations of assets is the

inverse cubic law, which stipulates that the tails of the returns are power law distributed

with an exponent µ + 1 ∼ 4. This behavior seems to be universal. It was observed on

several financial markets (stocks, stock indexes, exchange rates, interest rates, and the

nearest delivery dates of commodities), different time scales (investigations where carried

on time intervals varying from minutes to months) and different time periods ([36], [50],

[35], [40]).

In more specific studies, several authors observed that the tail exponent remains outside

the Lévy stable domain, within a range of 3 to 5, for symmetric as well as for asymmetric

tails ([21], [66]). As also shown in [7], the estimate of the exponent can be sensitive to

the time scale and µ is lower for high frequency data, compared to the figures obtained

with weekly or monthly time series. Even if, on the basis of empirical data, a precise

determination of the tails remains hard, finding an accurate value for the exponent is an
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Figure 3.8: Kurtosis as a function of the maturity. (a) agricultural products; (b) energy
sector; (c) interest rates; (d) Gold. The abscissae of figures (b), (c) and (d) are in log
scale.

important issue. More precisely, the finite fourth normalized cumulant requires µ > 4,

otherwise the kurtosis is ill-defined and may lead to tricky conclusions.

The literature provides several methods for the estimation of the tail exponent. Many
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works resort to the Hill estimator, which is the conditional maximum likelihood estimator

for a pure power law distribution, and is based on the k largest order statistics ([41]).

The easy computation and the accuracy of this estimator, at least for some statistical

distributions, made it very famous. It is the one used in [60] in order to distinguish be-

tween the scaling properties of stocks and commodities. In [72], the authors introduce

another estimator, the so-called MS estimator ([61]) and compare its accuracy with the

previous one. They show that the tail exponent of certain markets strongly depends on

the estimation threshold retained, and that, close to the limit of the stable Lévy regime,

the Hill estimator is not reliable. The MS estimator must however be carefully used,

especially close to the stability limit. As an example, empirical distributions of traded

volumes are found to belong outside the Lévy stable domain by [27] and [65], but not

by [72]. Moreover, in [73], the authors point out that the MS is an estimator of the tail

exponent if and only if the exponent is less than 2. Otherwise, it converges to 2. It is

thus important to retain a method which does not rely on such estimators and does not

depend on an a priori threshold (see for example [20]).

In our study, we retained the procedure described in [19] which, first does not require an

a priori threshold and second, uses maximum-likelihood fitting methods with goodness-

of-fit tests. The latter are based on the Kolmogorov-Smirnov statistic and on likelihood

ratios. Finally, in order to obtain the most accurate values for the tail exponent and

standard errors, we combined their method with bootstraped samples.

In what follows, we first present the results obtained for each market. We then propose a

more general analysis, based on averaged tail exponents.

3.5.1 ⋆Overview of the results for each market

The study of the term structures of the tail exponents for the 13 futures contracts under

examination leads us to several results, as illustrated by Figures 3.9 and 3.10. The latter

provide representative examples of the positive, negative and absolute exponent term
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Figure 3.9: Tail exponent term structures. Upper panel: Eurodollar; Lower panel: Light
crude oil. From the left to the right: Positive tail; Negative tail; Absolute returns. The
dashed line corresponds to the limit of the Lévy stable regime. The abscissae are in log
scale.

structures obtained for each category of futures contracts, that is to say Eurodollar, Light

crude oil, Wheat and Gold.

First, most of the returns do not belong to the Lévy stable domain, whatever the maturity

is considered. Thus, in their majority, the distributions of the returns cannot be described,

neither by stochastic processes with stable laws and infinite variance, nor by brownian

motions. The exceptions are the European Natural gas and the first maturities of the

three interest rates contracts. Due to monetary policy actions, governments indeed often

maintain the same level of interest rates during several months. Over reaction of the
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traders to sudden changes in the level of politically driven interest rates might explain

the greater probability of high extreme events.

Second result, the distribution of absolute returns exhibits an increasing term structure

of the tail exponent for Light crude oil, Gold, Heating oil and the three interest rates.

We observed the opposite behavior for Wheat and the two natural gases. No specific

tendency can be found on the agricultural products.

Third result, some of the futures contracts, that is to say Light crude oil and Gold,

are characterized by a strong asymmetry between the positive and negative parts of the

distribution (Fig. 3.9(d,e) and Fig. 3.10(d,e)). Oil is distinguishable as it exhibits

relatively few rare events on its right tail. The same phenomenon is typical of the left tail

of the Gold contract. As a consequence, these two contracts exhibit relative high errors

and exponents’ level on these sides of their distribution. As mentioned in 3.4.3, this might

be attributed to the level of contango and / or backwardation of these markets.

Lastly, the interest rates contracts share common patterns: the exponents of the short-

term maturities belong to the Lévy stable domain. Moreover, µ increases slowly with the

maturity, thus indicating a damping of extreme price movements, and reaches a plateau

at long time scale. The same kind of conclusion has been reached by the authors in [24]

on the Eurodollar. In their study, they compare the probability distribution with the

general class of Lévy, Khinchtine stable distributions. They observe that from 1990 to

1996 the tail region is in the Lévy stable domain. They also expect a faster decrease for

larger fluctuations as would be the case for truncated Lévy flights [55]. We thus find, on

a latter period (1998− 2010), similar values for the short-time part of the prices curve as

well as a faster vanishing for higher maturities. Moreover, we generalize these results on

other interest rates.

47



Chapter 3. ⋆Stylized facts and statistical properties of derivatives

5 10 15

M

0

2

4

6

µ
>0

(a)

5 10 15

M

0

2

4

6

µ
<0

(b)

5 10 15

M

0

2

4

6

µ
abs

(c)

0 20 40 60

M

0

2

4

6

µ
>0

(d)

20 40 60

M

0

2

4

6

µ<0

(e)

20 40 60

M

0

2

4

6

µ
abs

(f)

Figure 3.10: Tail exponent term structures. Upper panel: Wheat; Lower panel: Gold.
From the left to the right : Positive tail; Negative tail; Absolute returns.

3.5.2 ⋆Generalized exponents term structure

In this section, we extend in the maturity dimension the results of [60]. The authors

indeed compare the scaling properties of spot and futures prices of commodities. They

however do not precise what kind of futures prices they use: our guess is that they retain

the nearest available maturity. They compute average exponents for all markets under

scrutiny and find µ̄spot ∼ 2.3 and µ̄futures ∼ 3.2. As far as our study is concerned, as we

aim to give a deeper insight of the maturity dimension, we calculate, for each maturity
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Figure 3.11: Aggregate tail exponents term structures; (a): Positive and negative ag-
gregate tail exponents; Inset: distance between the positive and negative aggregate tail
exponents; (b) Absolute returns

M , the average, positive, negative and absolute tail exponents:

µ̄ (M) =
1

N (M)

N(M)∑

i=1

µi (M) , (3.8)

where µ̄ (M) can be estimated for absolute, positive, negative tails and N (M) is the

number of futures contracts with maturity M .

We thus test whether the inverse cubic law can be observed in the maturity dimension. If

this is true, this would suggest the presence of identical trading behavior for assets traded

on the spot and derivative markets.

We present the results on Figure 3.11. The average positive and negative exponents’

curves roughly collapse from the first to the thirty-six months with a minimum close to

the Lévy stable region. Then they separate from each other and the values of µ̄ become

greater for left tails. The degree of asymmetry between the two tails is measured by the

distance |µ>0 − µ<0| (inset of Figure 3.11(a)). We observe a segmentation along the term
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structure into four parts: from the first to the eighteenth months, the figures are close to

0.5; then, until the 35 months’ maturity, they decrease around 0.2. From 36 to 75 months

they reach a plateau, close to 0.4. Finally, the curve goes down and stabilizes around 0.1.

Thus the presence of preferred habitats, usually detected in prices (3.4.1, [47], [34]), can

also be observed in the asymmetry of extreme events.

We finally studied the behavior of absolute returns, as displayed by Figure 3.11(b) and

observe two regimes of values. A first plateau is located around µ̄abs ∼ 3.15 and is

surrounded by the 1st and 18th months. A second one starts at 19 months and ends at

the latest maturities, for a value close to µ̄abs ∼ 2.53. In [60], the authors find a futures

power law decay with an exponent close to 3.2, which is in good agreement with our

values, for the first part of the curve. As the authors did not give any information about

the maturity of the futures prices used, we cannot precisely localize their value on the

first plateau.

The existence of these two regimes for the tail exponent reminds of a phase diagram.

This result suggests that in the idea of a thermodynamic limit, with an infinite number

of markets, the curve µ̄abs (M) could be defined as follows:

µ̄abs (M) ∼





3 if M < Mt,

2.5 if M > Mt,
(3.9)

with Mt = 18 months. This transition value Mt marks off two regions of extreme events.

The first is close to the spot price and the shock regime is probably mostly originated

from the physical market and inventories. The second region is characterized by another

type of shocks which might be due to a lack of liquidity or financial activity. In such a

perspective, we hypothesize that the maturity Mt defines a time horizon delimiting two

regimes of risk.
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3.6 ⋆Conclusions

This section presents novel empirical results on derivative markets. More precisely, it

examines and compares the behavior of the term structure of futures prices’ returns of

commodity and financial derivatives. The originality in this study is twofold. First, we

include the maturity dimension in the analysis: the temporal aspect of the term structure

indeed has often been discarded in previous works. Second, we examine commodities

which, compared to financial assets, have received less attention.

The study of the statistical properties of daily prices returns, over a ten-year period, leads

to a first important conclusion: there is a clear distinction between the financial underlying

assets and the commodities. Whereas the mean absolute return and the variances exhibit

a bell curve for interest rates, with a maximum located at a maturity indicating a limit

of the monetary policy influence, the commodities can be distinguished by a decreasing

pattern with the maturity. This phenomenon is usually referred to as the Samuelson

effect. The fluctuations of the returns characterize it with an exponent ∼ 0.3, which may

be universal for commodities. To the best of our knowledge, it is the first time that such

a conclusion is reached. Moreover, the analysis of the skewness and kurtosis shows that

derivative markets tend to exhibit an asymmetrical distribution skewed to the left (right)

when they are in contango (backwardation).

A second important conclusion comes from the study of rare events. We first observe that

in their majority, the distribution of the returns along the term structure do not belong

to the Lévy stable domain. Thus, they cannot be described by stochastic processes with

stable laws and infinite variance or by brownian motions. More importantly, we then

find evidence of the existence of two regimes of risks in the maturity dimension: the

value of the average tail exponent defines a phase diagram with two phases separated at

the maturity of transition Mt = 18 months, reflecting a segmentation in the maturity

dimension and a fatter tail above Mt.

Further developments in the modeling of commodity prices and interest rates should take
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into account these new empirical facts. Moreover, there is a need to highlight the origin

of microscopic and/or macroscopic forces responsible for such statistical properties.
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In this chapter we present the tools used to perform the analysis of the integration

derivative markets. In the first section we expose a correlation-based method which al-

lows to transform a correlation matrix into a distance matrix. The former is then used to

build the so-called Minimum Spanning Tree which allows to study the links between the

most correlated assets. The second section is devoted to the description of the topolog-

ical properties of the trees. We present how to extract economical information from the

visualization as from allometric properties of the trees. In the third section we expose the

dynamical measures used to study the temporal dimension.

From a physicist point of view, financial markets are very challenging complex systems.

Among the different tools which were developed and used in this field, one seems naturally

relevant to perform a three-dimensional analysis of the integration of derivative markets:

the graph theory, also referred to as networks analysis. A graph can be defined as a math-

ematical representation of pairwise relationships within a collection of discrete entities.

Representing a financial market as a graph is appealing because such a system is com-

posed of a large number of assets, such as equities, bonds, stocks or derivative products.

The graph gives a way to describe all the links (edges) connecting these entities (nodes).

Moreover, the graph can be weighted in order to represent the different intensities of these

links and/or nodes.

The graph theory has received a lot of attention from the physicist community during

the last decade. Today, it is used in order to describe various complex systems such as

biological cells, biochemical reactions, the Internet, and financial markets. Among the

different tools and measures recently developed we selected, for our study, those allowing

us to analyze market integration in a three-dimensional approach.

We first decided to represent our prices system through the study of the correlations of

returns. Having transformed these correlations into distances, we were able to draw a full

connected graph of our system, where the nodes of the graph represent the different time
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series of futures prices. The dimension of our correlation matrix being high, in order to

filter the information contained in the graph, we rely on specific graphs, namely minimum

spanning trees. The method used to build minimum spanning trees is presented in the

second section of this chapter. In order to understand the organizing principles and the

dynamic behavior of these trees, we employed a method which is presented in the third

section of this chapter.

4.1 Preliminary studies on integration

The financial literature has investigated the question of integration through different ways.

As early as 1990, [71] began to study the herding behavior of investors on commodity

derivative markets. Their seminal work shows that the persistent tendency of commodity

prices to move together can not be totally explained by the common effects of inflation,

exchange rates, interest rates and other macro-economic variables. It has inspired several

other researches on co-movement. Yet, in this kind of work the identification of the rel-

evant economic variables is tricky. This could explain why empirical tests do not really

succeed in concluding that there is herding behavior in commodity markets.

Focusing on spatial integration, [44] initiated another approach to the systemic risk in

commodity markets. Such a study is centered on the relationships between the prices

of raw materials negotiated in different places. The authors initiated several works on

spatial integration, based on the methodology of the co-integration. The empirical tests

show that commodity markets are more and more spatially integrated. In the same vein,

[9] examined the links between stock and commodity markets. They were however not

able to conclude that the former have an influence on the latter.

Integration has also a temporal dimension, in the sense of the preferred habitat theory

([64]). In [47], the author studied the segmentation of the term structure of commodity

prices and examined the propagation of shocks along the prices curve, on the crude oil
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Figure 4.1: List of commodities investigated by the authors of [83].

petroleum markets. She showed that temporal integration progresses trough time.

In statistical physics, the minimum spanning tree is the tool that is the most heavily used

in order to understand the evolution of complex systems, especially when these systems

are financial assets. Other filtering procedures have been used by different authors, [59],

and provide different aspects of the information stored in the investigated sets.

In the pionneer work of [54], relying on minimum spanning trees, the author sinvestigates

cross correlations of asset returns and identifies a clustering of the companies under inves-

tigation. In [4], the authors use this correlation based method in order to examine stocks

portfolios and financial indexes at different time horizons. They also apply this method

in order to falsify widespread markets models, on the basis of a comparison between the

topological properties of networks related to real and artificial markets. The filtering ap-

proach based on the minimum spanning tree can also be used to construct a correlation
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based classification of relevant economic entities such as banks or hedge funds, [62]. Last

but not least, the robustness over time of the minimum spanning tree’s characteristics

has also been examined in a series of studies, like for example [45] and [67].

As far as commodities are concerned, [83] recently proposed a study of commodities clus-

tering using minimum spanning trees and statistical physics tools. Whereas they found

evidence of a market synchronization, which is a crucial point when aiming at understand-

ing systemic risk, some criticisms can be made. First, the database used in [83] contains

commodities characterized by a low transaction volume, which can introduce noise in the

correlation matrix. Second, they do not examine the maturity dimension of the futures

contracts.

4.2 Minimum Spanning Trees: a correlation-based method

In order to study the links between assets and /or maturities, we first of all compute the

synchronous correlation coefficients of the prices returns. This coefficient matrix is the

starting point of our analysis. In order to use the graph theory, there was however a need

to quantify a distance between the elements under examination. We thus extracted a

metric distance from the correlation matrix. We then had the possibility to build some

graph. Lastly, we used a filtering procedure in order to identify the minimum spanning

tree ([54]). Such a tree can be briefly defined as the one providing the best arrangement of

the different points of the network, that is to say, the one that identify the most relevant

connections between points.

4.2.1 The correlation matrix

In order to measure the degree of similarity between the synchronous time evolution of

futures contracts, we built a matrix of correlation coefficients. The latter are defined as
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follows:

ρij (t) =
〈rirj〉 − 〈ri〉 〈rj〉√(

〈r2i 〉 − 〈ri〉2
) (〈

r2j
〉
− 〈rj〉2

) , (4.1)

where i and j are pairs of assets (that is to say, i and j stand for the nearby futures prices

of pairs of assets like commodities, interest rates, stocks, and currencies) when spatial

integration is under scrutiny, pairs of delivery dates when we focus on maturity integration,

or a mix of the two when a three-dimensional analysis is performed. The daily logarithm

price differential stands for prices returns, with ri = (lnFi(t)− lnFi (t−∆t)) /∆t, where

Fi(t) is the settlement price of the futures contract at the instant t. ∆t is the time horizon,

and 〈.〉 denotes the statistical average performed other time, on the trading days of the

investigated time period.

By definition the correlation coefficient ρij (t) can vary from −1 (complete anti-correlation)

to 1 (complete correlation). Lastly, when ρij (t) = 0, there is no correlation.

For a given time period and a given set of data, we thus computed the N × N matrix

of correlation coefficients C, for all the pairs ij. C is symmetric with ρij = 1 in the

main diagonal where i = j. Consequently, such a matrix is characterized by N (N − 1) /2

coefficients.

In order to study the correlations of returns and their statistical properties, we mainly

follow [83]. More precisely, in order to examine the time evolution of our system and

its sensibility to specific market events, we also investigate the mean correlations of the

returns and their variances.

The mean correlation CT (t) for the correlation coefficient ρTij in a time window [t−∆T, t]

can be defined as follows:

CT (t) =
2

N (N − 1)

∑

i<j

ρTij (t) , (4.2)
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The variance σ2
C of the mean correlation is given by:

σ2
C =

2

N (N − 1)

∑

i<j

(
ρTij (t)− CT (t)

)2
. (4.3)

While computing the mean correlations and their variances, we examined the window

size dependance of these quantities (needless to say, this problem also has an influence on

other investigated quantities, such as node strength, tree length, main occupation layers

and survival ratios). The choice of the size of the time window ∆T is a compromise

between the noise’s level and a good statistical averaging. A large window decreases

the noise’s level but also gives averages over a too long time period. The selection of

different time windows (i.e. ∆T = 20, 120, 240, 480 and 960 trading days) and the

study of the corresponding size effects lead us to choose a window’s length of 480 days for

all the quantities which are used in this study. This value is smaller than those usually

encountered in physics. It however allows us to grasp finer market’s evolutions.

4.2.2 From the correlation matrix to the distance matrix

In the search for a description of futures prices relying on the graph theory, there is a need

to introduce a metric. The correlation coefficient ρij indeed cannot be used as a distance

dij between i and j because it does not fulfill the three axioms that define a metric [37]:

• dij = 0 if and only if i = j,

• dij = dji

• dij ≤ dik + dkj

A metric dij can however be extracted from the correlation coefficients through a non

linear transformation. Such a metric is defined as follows:

dij =
√

(2 (1− ρij)). (4.4)
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Figure 4.2: Distance dij between two commodities or delivery dates as a function of the
correlation coefficient ρij .

Thus the distance matrix D is extracted from the correlation matrix C according to

the equation (6.2). C and D are both N × N dimensional. As illustrated by figure

(4.2), while the coefficients ρij can be positive for correlated returns or negative for anti-

correlated returns, the distance dij representing the distance between prices returns is

always positive.

With such a metric, the first axiom defining a metric is valid because dij = 0 if and

only if the correlation is total (namely, only if the two futures prices follow the same

stochastic process). The second axiom is valid because the correlation coefficient matrix

C is symmetric. Hence, the distance matrix D is symmetric by definition. The third

axiom is valid because equation (6.2) is equivalent to the Euclidian distance between two

vectors .

The distance matrix D can then be employed in order to build the graph that connect all

the elements of the system.
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4.2.3 From full connected graphs to Minimum Spanning Trees

(MST)

A graph gives a representation of pairwise relationships within a collection of discrete

entities. A simple connected graph represents all the possible connections between the N

points under examination with N − 1 edges. Each point of the graph constitutes a node

or a vertex.

A weighted graph gives more information than a simple one, which just describe the

existing relationships between the elements of the system being described. The weights

indeed give some information about the intensity of the relationships. Such weights can

for example represent the distance separating the nodes.

Previous studies of complex networks have lead to the conclusion that such systems can-

not be described by simple or even weighted graphs. In order to fully understand the

dynamics of the system and its organizing principles, there is a need to span the graph,

i.e. to traverse all its nodes. However, starting from one node and going to the next one

until all the graph has been spanned, there are a lot of different paths. In other words,

there are a lot of spanning trees. The aim of the analysis relying on graph theory is to

retain all the important information while having a simple representation of this informa-

tion. Minimum spanning trees have proven to give a simple and efficient answer to this

problem. In a weighted graph, the minimum spanning tree (MST) is the tree spanning of

the nodes of the graph, without loops, having less weight than any other. It thus gives

the shortest path linking all nodes between them. The links of the MST are a subset of

the links of the initial graph. Figure (4.3) gives an example of such a MST, for a graph

having weighted links between its different nodes. It also shows that a single connected

graph has many spanning trees.

The MST associated with a distance matrix can be built as follows ([54]). The MST is

progressively built up by linking all the elements of the set under examination in a tree

characterized by a minimal distance between nodes. The first step consists in ordering the
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Figure 4.3: Example of a minimum spanning tree constructed from a graph with weighted
edges. The minimum spanning tree (MST) is a particular subgraph of the original one.
The MST covers all the points with the less weighted path (black line) and without
forming any loop.

non-diagonal elements of the distance matrix D in increasing order. The starting point

is then the pair of elements with the shortest distance. At this stage, the MST is just

composed by these two elements. Starting from one or the other of these two elements,

the next smallest distance is determined, adding thus a third element in the MST. By

continuing, the tree includes a fourth element, a fifth one, and so on. If the next smallest

distance concerns two elements which are already in the MST, this distance is ignored, in

order to avoid loops. In our study, we used Prim’s algorithm ([75]) in order to built the

minimum spanning trees. As described above, starting from a single node, this algorithm

continuously increases the size of a tree until it spans all the vertices of a connected graph.

The MST is attractive because through a filtering procedure10, it provides for an arrange-

ment of the different points of the graph which reveals the most relevant connections of

each elements of the system. In the context of our study, it gives us a synthetic way to ob-

serve the connections between different assets and maturities. As the minimum spanning

10The MST can be considered as a filter as during its construction, we are reducing the information
space from N(N − 1)/2 separate correlation coefficients to N − 1 tree edges.
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tree is a path between nodes with a minimal distance, it is also, according to equation

(6.2) the path between the most correlated nodes. Thus, such a method can be seen as a

way to reveal the underlying mechanisms of systemic risk: the minimal spanning tree can

be interpreted as the easiest path for a shock to propagate in three dimensions: space,

maturity and observation time.

4.3 Topology of the Minimum Spanning Trees

The first information given by a minimum spanning tree is the kind of arrangement found

between the vertices. So a first step of the study of minimum spanning trees lies in the

visualization of the trees. After a simple graphic representation of the MST, we use the

method of the allometric coefficients in order to quantify wether the filtered network is

totally organized, totally random, or is situated somewhere between these two extreme

kinds of organization.

4.3.1 Visualization and description of the MST

The visualization of the trees is the first step of the analysis of a complex system through

the method of the MST. It is a very important step, as the meaningfulness of the taxonomy

that will emerge of the system through the representation of the trees will be one of

the main justifications for the use of the method. In our study, the analysis of the

groups formed by the different underlying assets in the space and the examination of the

organization of the different delivery dates will be very interesting.

After visualizing the MST, there is a need to describe and interpret the graphs. In our

three-dimensional analysis of the integration of derivative markets, we propose the use of

a distinct terminology according to the dimension under examination. In order to describe

the grouping of underlying assets in the space, we will use the term sector, whereas in

order to describe the grouping of delivery dates in the maturity dimension, we will retain
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the word cluster. In both cases, the term branch will refers to a subset of the tree. In

addition, in order to describe the graph, there is a need for a reference point. In our case,

the reference is the central node. We will come back to this concept while presenting the

notion of the mean occupation layer.

4.3.2 Allometric behavior of the MST

One step further in the interpretation of the information given by the MST is the analysis

of its complexity. Star-like trees are symptomatic of a random organization of the elements

of the system, whereas chain-like trees reveal a very strong organization. In order to

determine wether our filtered networks are totally organized, totally random, or where

there are located between these two extreme kinds of organization, we decided to study

the allometric behavior of the MST.

The first model of the allometric scaling on a spanning tree was developed by [2]. The

first step of the procedure consists in initializing each node of the tree with the value 1.

Then the root or central vertex of the spanning tree must be identified. In what follows,

the root is defined as the node having the highest number of links attached to him11.

Starting from this root, the method consists in assigning two coefficients Ai and Bi to

each node i of the tree. Such coefficients are defined as follows:

Ai =
∑

j

Aj + 1 and Bi =
∑

j

Bj + Ai, (4.5)

where j stands for all nodes connected to i in the MST. The allometric scaling relation is

defined as the relation between the two allometric coefficients Ai and Bi:

B ∼ Aη, (4.6)

11There are actually several definitions for the central vertex, as will be explained a bit later in this
section, in the paragraph devoted to the mean occupation layer
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where the exponent η is called the allometric exponent. The latter represents the degree

of complexity of the tree and stands between two extreme values: 1+ for star-like trees

and 2− for chain-like trees.

4.4 Dynamic analysis of the Minimum Spanning Trees

Minimum Spanning Trees are appealing because of the information revealed by their

topology. However, such a correlation based method is intrinsically time dependent. Thus,

there is a need to study the time dependent properties of the MST. In our case, as the

MST reflects the temporal state of the markets under consideration, we will particularly

focus on the possible consequences of markets events on the structure of the system.

In order to study the robustness of the trees’ topology, we use several measures. We first

calculate the nodes strength, which gives an information on how much a node is correlated

to the others in the MST. The graph lengths reveals the state of the system at a specific

time. We next use the concepts of central vertex and mean occupation layer in order to

appreciate the compactness of the trees. Lastly, survival ratios indicate how the topology

of the trees evolves with time.

4.4.1 Node’s strength

The node’s strength Si is defined as follows:

Si =
∑

i 6=j

1

dij
. (4.7)

This quantity, calculated for each node i, indicates the closeness of one node i to the others

and in our case, give thus an information on the intensity of the correlation between this

node and the others. When Si is high, the node is close to the others whereas when it

is low, the node is far from the others. Lastly, the node strength gives the possibility to
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undertake static and dynamic analysis. It indeed can be computed over the entire period

under examination or it can be measured on the basis of rolling windows having a size

∆T .

4.4.2 Tree’s length

Another interesting quantity is the normalized tree’s length, which can be defined as the

sum of the lengths of the edges belonging to the MST:

L (t) =
1

N − 1

∑

(i,j)∈MST

dij, (4.8)

where t denotes the time at which the tree is constructed, and N − 1 is the number of

edges present in the MST.

The length of a tree is all the more important that the distances are high, that is to say, in

our case, that the correlations are low. Thus, the more the length of the tree diminishes,

the more integrated the system is.

4.4.3 Central vertex and mean occupation layer

The central vertex and the mean occupation layer allow to appreciate the degree of the

compactness of a graph. Understanding the concept of the central vertex, or root of

the tree, is a prerequisite for the use of the mean occupation layer. Such a concept is

very important for the analysis of the topology and dynamic behavior of the networks,

especially when studying financial markets integration.

The central vertex can be defined as the parent of all other nodes in the tree. It is thus

a reference point in the three, against which the localization of all other vertices is set.

This concept is very important in our case, as if a shock emerges at this specific node, it

will have a more important impact than anywhere else in the tree. Moreover, such a node

will be the preferred one for the transmission of a shock.
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There are several ways to define the central vertex of a tree. [67] propose three alternative

definitions. According to the first one, the central vertex is the node with the highest

vertex degree, namely the highest number of edges which are incident with the vertex

(this definition is the one retained for the computation of the allometric coefficients).

The second definition corresponds to the weighted vertex degree criterion and defines the

central vertex as the one with the highest sum of those correlation coefficients that are

associated with the incident edges of the vertex. In such a case, more weight is given to

short links, whereas in the first definition, each departing node was weighted in the same

way. In order to present the third definition, let us first introduce the mean occupation

layer proposed by the authors.

This quantity L can be computed in the following way:

L =
1

N

∑

i

l (vi) , (4.9)

where l (vi) is the level (layer) of the vertex i. This measure must not be confused with

the distance dij between nodes. The level says, indeed, how far the node i is to the central

node, whose level is set to zero.

The mean occupation layer L indicates the layer where the mass of the tree is located.

The node minimizing the mean occupation layer is the center of the mass, given that all

nodes are assigned an equal weight and consecutive layers are at equidistance from one

another.

This quantity, displaying information about the topology of the tree, can be computed

on the whole period, or dynamically. In a dynamic analysis, a low value of the mean

occupation layer reflects an homogeneous behavior of the different elements of the system

under investigation.

The existence of several definitions naturally induces to discuss the choice of a specific

definition and the identification of the central vertex. Following [67], we choose the mean
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occupation layer because the first and second definitions of the central vertex are local

in nature, whereas the mean occupation layer gives a global appreciation of the topology

of the tree. Even if this choice can be considered as arbitrary, it is not crucial, as the

authors showed that the three definitions yield to similar and even, in most cases, identical

conclusions.

4.4.4 Survival ratios

Finally we examined the robustness of the MST over time by analyzing the single step

survival ratio SR of links. This quantity refers to as the fraction of common links between

two consecutive MST, at times t and t− 1 ([67]):

SR (t) =
1

N − 1
|E (t) ∩ E (t− 1)| . (4.10)

In this equation, E(t) refers to the set of edges of the tree at time t, ∩ is the intersection

operator, and |..| gives the number of elements in the set. Under normal circumstances,

the topology of the trees for two consecutive steps should be very stable, at least for small

values of the windows length’s parameter ∆T . While some fluctuations of the survival

ratios might be due to real changes in the behavior of the system, it is worth noting that

others may simply be due to noise. In our study, we will focus on strong fluctuations of

survival ratios and examine whether or not strong trees reconfigurations do coincide with

specific market events. We will also naturally examine the eventual presence of trends in

the evolution of these ratios.
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In this chapter we apply the methodology of minimum spanning trees on the Energy

subset and mainly focus on the topological properties of the correlations. We first in-

vestigate the correlations between maturities for two different markets, namely the NCL

Crude and the NHO Heating Oil. Then we examine the spatial relations between crude

oil and petroleum products at different maturities.
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5.1 Maturity integration of two energy markets

The test of temporal integration should reflect the presence of the Samuelson effect on the

data. In an ideal case, the maturities would be perfectly organized, ranging regularly from

the first to the last delivery date. Consequently, the topology of the minimum spanning

trees should be linear.

5.1.1 Temporal integration of the Heating Oil (NHO)

In order to examine correlation between maturities for the NHO Heating Oil, we have

considered two series of eighteen and thirty-six maturities. In both case, the minimum

spanning tree is extracted from the distance matrix and the correlation coefficients are

computed for all pairs of maturities between 07/07/98 and 10/09/09 for eighteen maturi-

ties and between 16/04/07 and 10/09/09 for the thirty-six maturities. Within these two

periods we have only averaged over the days when all the contracts were traded. The

figure 5.1 shows the links between one month to eighteen months’ maturities 5.1 (a) and

one to thirty-six months’ maturities 5.1 (b). In both cases, the topology of the minimum

spanning trees are identical. The trees are linear, without branching point, and the ma-

turities are perfectly ordered. This results act as a test for our methodology as a linear

structure is expected from the Samuelson effect.

5.1.2 Temporal integration of the Crude Oil (NCL)

We have then studied three series of maturities for the NCL. We have observed one to

fifteen months’ maturities between 06/21/89 and 07/29/09, one to eighteen maturities

between 07/16/90 and 07/29/09 and one to twenty-eight months’ maturities (plus thirty-

six, forty-eight and sixty months’ maturities) between 03/20/97 and 07/29/09.

For the three series, the topology are similar to those obtained for the NHO Heating Oil,

and are roughly linear with ordered maturities 5.2 (a, b) and 5.3. A comparison of the

70



5.1. Maturity integration of two energy markets

HEATING OIL US-US
(a)

(b)

1M-2M-3M-4M-5M-6M-7M-8M-9M-10M-11M-12M-13M-14M-15M-16M-17M-18M

1M-2M-3M-4M-5M-6M-7M-8M-9M-10M-11M-12M-13M-14M-15M-16M-17M-18M

36M-35M-34M-33M-32M-31M-30M-29M-28M-27M-26M-25M-24M-23M-22M-21M-20M-19M

Figure 5.1: Links between maturities for NHO Heating Oil. Figure (a) eighteen maturities
between 07/07/98 and 09/10/09. Figure (b) thirty-six maturities between 16/04/07 and
09/10/09.

three minimum spanning trees indicates that when longer maturities are added to the

graph, the shortest maturities are more ordered. As the longer maturities appear at the

end of our database, this ordering process of the shortest maturities could be interpreted

as the result of the maturation processus of the market.

We have already noticed that the different maturities of the NHO Heating Oil are perfectly

ordered. It could be very interesting to test over a longer period for the NHO Heating Oil

if both the maturation of the market and the add of longer maturities tends to stabilize

the shortest ones.

The different behavior at long maturity (more than fifteen months) is surprising. It is

unexpected that the maturities of the NCL Crude are less ordered than the NHO Heating

Oil, while the NCL Crude has a more important activity. Different arguments can be

given to explain this empirical observation:

• The is a problem with the temporal series extracted from DATASTREAM
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CRUDE US-US
(a)

(b)

1M-2M-3M-4M-5M-7M-8M-9M-10M-11M-13M-15M-17M-18M

6M 12M 14M

16M

1M-2M-3M-4M-5M-7M-8M-10M-11M-13M-15M-14M

12M6M

9M

Figure 5.2: Links between maturities up to fifteen maturities (a) and eighteen maturities
(b).

• the long maturities are less reliable for the crude oil rather than the heating oil

(which would be a surprise). We will have to check in our next investigations the

volume of contracts traded for the long maturities.

• the maturities form blocks that act in cooperation. There is a first block between

one to fifteen months (moreover the fifteen months’ maturity is important for the

market). There is a second block of maturities between sixteen and twenty (including

the key maturity eighteen month). Finally, there is a last group made up of long

maturities with the particular twenty-four months’ maturity astonishing localized

at the periphery of the tree.
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CRUDE US-US

1M-2M-3M-4M-5M-6M-7M-8M-9M-10M-11M-12M

13M

14M

16M

20M-21M-18M-15M-

17M

16M19M

27M28M

26M

22M

23M

24M

-36M-48M-60M

-25M

Figure 5.3: Links between maturities up to sixty months.

5.2 Spatial integration of energy markets

We study in this section the spatial aspect of the integration of the three futures contracts

on crude oil and the two futures contracts on petroleum products between 21/04/06 and

07/29/09.

In order to give more insight on the empirical relationship linking the market, we realized

several tests on different maturities, from one to three months, six months and twelve

months.

5.2.1 Maturities 1, 2 and 3 months

The figure 5.4 represents the link between the markets in the minimal spanning tree. For

the maturity one to three months, the topology of the tree is the unchanged and the
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NCL     LTC     LLC     LHO     NHO

Figure 5.4: Links between the five energy markets NCL, LLC, LTC, NHO, LHO at ma-
turity one month.

different qualities are well separated.

The two commodities NCL and LTC are naturally connected because it is the same qual-

ity but traded in different place. This first link is a pure geographical connection.

Then, there is a connection between LTC and LLC based on the quality. The two com-

modities are traded at the same place (London), but there is an American crude oil and

an European crude oil.

The next link is an upstream-downstream relation, in term of industrial process, with the

crude oil traded in London as input and the heating oil traded in London as output.

The last edge in the graph is again a purely spatial link between the two heating oil

LHO and NHO. The latter connection is surprising while one could imagine a preferred

link between the American crude oil NCL and the American heating oil NHO. A possible

explanation is the presence of noise for the short maturities prices.

Let us notice that while the topology of the trees does not change between one and three

months but the length of the tree decreases with the maturity.
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NCL     LTC     LLC

NHO     LHO

Figure 5.5: Links between the five markets NCL, LLC, LTC, NHO, LHO at maturity six
months.

5.2.2 Maturity 6 months

The links between the five markets at a maturity six months are given on the figure 5.5.

While the topology remained unchanged for the three first maturities, at six months the

tree is no more linear and a node with a connectivity equal to three appears. The most

connected market is the LTC Crude. The latter acts as pivot in the system and is between

NCL and LLC in term of quality and trading place. Moreover, the LTC connects the two

heating oil, first the LHO traded at the same place and then the NHO.

5.2.3 Maturity 12 months

NCL     LTC     LLC

NHO     LHO

Figure 5.6: Links between the five markets NCL, LLC, LTC, NHO, LHO at maturity
twelve months.
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The relations between the prices at the maturity twelve months are represented on the

figure 5.6. The topology of the networks is again modified. The pivot, which allows to

move from the crude oil to the heating oil is no more the American crude oil negotiated

in London but the American crude oil traded in United States. Furthermore, the NHO is

before the LHO. As the NCL is the most important market, it is relevant that the latter

plays the role of the pivot when long maturities are considered. On the other hand, it

is also interesting to notice that the distance between the NHO and the LHO is smaller

than the distance between the LLC and LHO. We can have a intuition, further tests are

necessary to conclude, that the links between financial markets have the upper hand over

the prices behavior of the same commodity but traded in different places. The financial

markets, easily arbitrable could have stronger links rather than the upstream/downstream

industrial link.

We can summarize all the results by plotting the path length of each minimum spanning

tree as a function of the maturity. The figure 5.7 shows that the total length of the

minimum spanning tree is decreasing function the maturity. The latter result implies that

the edges of the graph become shorter. We have also compute the average correlation

〈Cij〉i∼j , where 〈...〉i∼j denotes the average over the edges of the graph. 〈Cij〉i∼j increases

with the maturity and tends to a value close to 1. We can highlight that the value of

the average correlation is high because we are considered edges of the minimum spanning

tree, and then the most correlated markets. But the relevant point is that the closest

markets become more and more correlated at long maturity.

5.3 Conclusion

In this chapter, we have estimated and quantified, through the scope of the minimum

spanning tree, the spatial integration of the five most important energy markets. Our

results are full of promise and we are confident to extract relevant economic information
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Figure 5.7: Path length (black line) and average correlation (dotted line) as a function of
the maturity M.

from the complex topology of commodities networks.

Our main result is that the links between markets, the edges of the minimum spanning

tree, have an economical interpretation that satisfies the intuition. We interpret this

result as a positive test for the relevance of our method and the application to derivative

markets.

We also observed that the strength of the integration increases with the maturity. The

latter result is original and has not been yet mentioned in other works. In particular, the

authors of [83] saw the spatial links between oil markets but miss the information into the

maturity dimension. The increase of the correlation with the maturity is coherent with

the Samuelson effect. As we are considering long maturity, the noise vanishes, and the

markets follow fundamental rules behavior.
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In this chapter we present the network analysis of fourteen derivatives markets in

different dimensions. In the first section we briefly remind the principal tools used in the

networks analysis. In order to study the integration of derivative markets, we rely on

the graph-theory. Among the different tools provided by this method, we selected those

allowing us to analyze market integration using a three-dimensional approach. We first

decided to represent our prices system by studying the correlation of price returns. Having

transformed these correlations into distances, we were able to draw a fully connected graph

of the prices system, where the nodes of the graph represent the time series of futures

prices. In order to filter the information contained in the graph, we rely on specific graphs:

minimum spanning trees (MST). The method used for the identification of the MST is

presented in the first part of this chapter. We then study the topology of the trees (second

section) and their dynamic behavior (third section).

6.1 Reminder on minimum spanning trees

The first step towards the analysis of market integration was in our case the computation

of the synchronous correlation coefficients of price returns. In order to use the graph

theory, we needed to quantify the distance between the elements under examination.

We thus extracted a metric distance from the correlation matrix. We were then able to

construct graphs. Lastly, we used a filtering procedure in order to identify the MST [54].

Such a tree can be defined as the one providing the best arrangement of the network’s

different points.
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6.1.1 The correlation matrix

In order to measure the similarities in the synchronous time evolution of the futures

contracts, we built a matrix of correlation coefficients. The latter are defined as follows:

ρij (t) =
〈rirj〉 − 〈ri〉 〈rj〉√(

〈r2i 〉 − 〈ri〉2
) (〈

r2j
〉
− 〈rj〉2

) , (6.1)

When focusing on the spatial dimension, i and j stand for the nearby futures prices of

pairs of assets, like crude oil or corn. In the absence of reliable spot data, we approximate

the spot prices with the nearest futures prices. When focusing on the maturity dimension,

they stand for pairs of delivery dates. They are a mix of the two when a three-dimensional

analysis is performed. The daily logarithm price differential stands for price returns,

with ri = (lnFi(t)− lnFi (t−∆t)) /∆t, where Fi(t) is the settlement price of the futures

contract at t. ∆t is the time window, and 〈.〉 denotes the statistical average performed

other time, on the trading days of the study period.

For a given time period and a given set of data, we thus computed the matrix of N ×N

correlation coefficients C, for all the pairs ij. C is symmetric with ρij when i = j. Thus,

is characterized by N (N − 1) /2 coefficients.

6.1.2 From correlations to distances

In order to use the graph-theory, we needed to introduce a metric. The correlation

coefficient ρij indeed cannot be used as a distance dij between i and j because it does not

fulfill the three axioms that define a metric [37]:

• dij = 0 if and only if i = j,

• dij = dji

• dij ≤ dik + dkj
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A metric dij can however be extracted from the correlation coefficients through a non

linear transformation. Such a metric is defined as follows:

dij =
√
(2 (1− ρij)). (6.2)

A distance matrix D was thus extracted from the correlation matrix C according to

Equation (6.2). C and D are both N ×N dimensional. Whereas the coefficients ρij can

be positive for correlated returns or negative for anti-correlated returns, the distance dij

representing the distance between price returns is always positive.

6.1.3 From full connected graphs to Minimum Spanning Trees

(MST)

A graph gives a representation of pairwise relationships within a collection of discrete

entities. A simple connected graph represents all the possible connections between N

points under examination with N − 1 links (edges). Each point of the graph constitutes

a node (vertex). The graph can be weighted in order to represent the different intensities

of the links and / or nodes. Such weights can represent the distances between the nodes.

In order to understand the organizing principles of a system through its representation as

a graph, it needs to be spanned, i.e. all its nodes need to be traversed. However, there

are a lot of paths spanning a graph. For a weighted graph, the minimum spanning tree

(MST) is the one spanning all the nodes of the graph, without loops. It has less weight

than any other tree. Its links are a subset of those of the initial graph.

Through a filtering procedure (the information space is reduced from N(N − 1)/2 to

N − 1), the MST reveals the most relevant connections of each element of the system. In

our study, they provide for the shortest path linking all nodes. Thus, they can be seen

as a way of revealing the underlying mechanisms of systemic risk: the minimal spanning

tree is indeed the easiest path for the transmission of a prices shock.
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6.2 Topology of the Minimum Spanning Trees: empir-

ical results

The first information given by a minimum spanning tree is the kind of arrangement found

between the vertices. Therefore, the first step in studying MST lies in their visualization.

We then use the allometric coefficients method in order to determine whether a MST is

totally organized, totally random, or is situated somewhere between these two extreme

topologies. In this part of the study, we consider the whole time period as a single window

and thus perform a static analysis.

6.2.1 Visualization and description of the MST

The visualization of the trees is a very important step, as it addresses the meaningfulness

of the taxonomy that emerges from the system. Before going further, let us make two

remarks: first, we are considering links between markets and/or delivery dates belonging

to the MST. Thus, if a relationship between two markets or maturities does not appear in

the tree, this does not mean that this relation does not exist. It just does not correspond

to a minimal distance. Second, our results naturally depend on the nature and number

of markets chosen for the study.

In what follows, we will use the term “sector” in order to describe the grouping of under-

lying assets, whereas we will retain the term “cluster” in order to describe, for a specific

market, the grouping of delivery dates in the maturity dimension.

Figure (6.1) presents the MST obtained for the spatial and for the maturity dimensions.

As far as the spatial dimension is concerned, the MST looks like a star. In Figure (6.1)-a

the three sectors can be identified: energy is at the bottom. It gathers American as well

as European markets and is situated between agricultural (on the left) and financial assets

(mainly on the right). Moreover, the most connected node in the graph is European crude

oil (LLC ), which makes it the best candidate for the transmission of price fluctuations in
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Figure 6.1: Static minimum spanning trees. Left panel: MST for the spatial dimension,
built from the correlation coefficients of prices returns, 30/04/01-01/08/09. Right panel:
MST on the maturity dimension, built from the correlation coefficients of the Brent crude
oil LLC, 01/04/2000-06/11/09.

the tree (actually, the same could have been said for American crude oil (NLC ), as the

distance between these products is very short). Last but not least, the energy sector seems

the most integrated, as the distances between the nodes are short. The link between the

energy and agricultural products passes through soy oil (CBO). This is interesting, as

the latter can be used for fuel. The link between commodities and financial assets passes

through gold (NGC ), which can be seen as a commodity but also as a reserve of value.

The only surprise comes from the S&P500 (ISM ), which is more correlated to soy oil

(CBO) than to other financial assets.
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Such an organization leads to specific conclusions regarding systemic risk. Let us suppose

that a prices shock reaches interest rates (IED). The star-like organization of the tree does

not enable us to determine whether this shock comes from the energy or the agricultural

sectors. Things are totally different in the maturity dimension.

In this case, it was not possible to give an illustration for each tree, as the database

gathers 14 futures contracts. We thus retained a representative tree, that of Brent crude

(LLC ). The latter is illustrated by Figure (6.1)-b. The MST is linear and the maturities

are regularly ordered from the first to the last delivery dates.

The analysis on the maturity dimension gives rise to three remarks. Firstly, this linear

topology reflects the presence of the Samuelson effect. In derivative markets, the move-

ments in the prices of the prompt contracts are larger than the other ones. This results in

a decreasing pattern of volatilities along the prices curve. Secondly, this type of organiza-

tion impacts the possible transmission of prices shocks. The most likely path for a shock

is indeed unique and passes through each maturity, one after the other. Thirdly, the short

part of the curves are generally less correlated with the other parts. This phenomenon

can result from prices shocks emerging in the physical market with the most nearby price

being the most affected; it could also reflect noises introduced on the first maturity by

investors in the derivative market.

Let us now turn to the three-dimensional analysis. Figure (6.2) represents the 3-D static

MST. Its shape brings to mind that observed in the spatial dimension. However, it is

enhanced by the presence of the different maturities available for each market. The latter

are clearly linearly organized. As previously, the tree shows a clear separation between the

sectors. Three energy contracts, American crude oil (NCL), European crude oil (LLC )

and American heating oil (NHO) are found at the center of the graph. They are the three

closest nodes of the graph. Moreover, the agricultural sector is no longer linked to gold.

It is now directly linked to American crude oil (NCL).

It would have been interesting to know which maturities connect two markets or sec-
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Figure 6.2: Static minimum spanning tree for the three-dimensional analysis, 27/06/2000-
12/08/2009. The different futures contracts are represented by the following symbols:
empty circle: IED, point: ISM, octagon: LNG, ellipse: LLE, box: NNG, hexagon: LLC,
triangle: NCL, house: NHO, diamond: NGC, inverted triangle: CBO, triple octagon:
CEU, double circle: CS, double octagon: CW, egg: CC. For a given futures contract, all
maturities are represented with the same symbol. The distance between the nodes is set
to unity.
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Allometric coefficient
Name Static coefficient Dynamical coefficient

IED 1,927± 0,056 1,913± 0,011
LNG 1,874± 0,002 1,886± 0,059
LLE 1,88 ± 0,003 1,943± 0,02
NNG 1,75 ± 0,037 1,774± 0,018
LLC 1,889± 0,003 1,904± 0,095
NCL 1,994± 0,045 1,906± 0,013
NGC 1,732± 0,092 1,908± 0,013
CBO 1,889± 0,003 1,886± 0,032
CS 1,848± 0,095 1,822± 0,095
CW 1,864 ± 0,13 1,761± 0,125
CC 1,88 ± 0,003 1,834± 0,024

Spatial 1,493± 0,056 1,621± 0,024

3-D 1,757± 0,023 1,85 ± 0,009

1

1 10 100

A
1

10

100

1000
B

Figure 6.3: Allometric properties of the trees. Left panel: static and dynamical expo-
nents for each futures contract (maturity dimension), as well as for the spatial and 3-D
analyses. Right panel: 3-D dynamical allometric coefficients in log-log scale. The dashed
line corresponds to the best fit with an exponent equal to 1.85.

tors. Economic intuition suggests two kinds of connections: they could appear on the

shortest or on the longest part of the curves. In the first case, the price’s system would

be essentially driven by underlying assets; in the second one, it would be dominated by

derivative markets. However, a closer analysis of the 3-D trees does not provide evidence

of either kind of expected organization. Moreover, the analysis of the tree at different

periods does not lead to the conclusion that there is something like a pattern in the way

connections occur. Further investigations are thus necessary in order to study the links

between markets and sectors more precisely. We offer an initial response to this problem

at the end of this section.

6.2.2 Allometric properties of the MST

Star-like trees are symptomatic of a random organization, whereas chain-like trees reveal

a strong structure. The computation of the allometric coefficients of the MST provides a
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means of quantifying the degree of complexity in the tree.

The first model of the allometric scaling on a spanning tree was developed by

[2]. The first step of the procedure consists in initializing each node of the tree with the

value 1. Then the root or central vertex of the tree must be identified. In what follows,

the root is defined as the node having the highest number of links attached to it. Starting

from this root, the method consists in assigning two coefficients Ai and Bi to each node

i of the tree, where:

Ai =
∑

j

Aj + 1 and Bi =
∑

j

Bj + Ai, (6.3)

j stands for all the nodes connected to i in the MST. The allometric scaling relation is

defined as the relationship between Ai and Bi:

B ∼ Aη, (6.4)

η is the allometric exponent. It represents the degree of complexity of the tree and stands

between two extreme values: 1+ for star-like trees and 2− for chain-like trees.

Figure (6.3) summarizes the allometric properties of the MST for each dimension. The

left panel reproduces the different exponents and gives the error resulting from a non-

linear regression. Figure (6.3) gives an illustration of the allometric coefficients in 3-D.

The dashed line corresponds to the best fit with an exponent equal to 1.85. The figure

shows that the coefficients are well described by the power law with an exponent.

As far as the spatial dimension is concerned, the exponents indicate that even if Figure

(6.1) seems to show a star-like organization, the shape of the MST is rather complex and

stands exactly between the two asymptotic topologies. There is an ordering of the tree,

which is well illustrated by the agricultural sector, which forms a regular branch.

Within the maturity dimension, the coefficients tend towards their asymptotic value η =

2−. They are however a bit smaller than 2, due to finite size effects (there is a finite

number of maturities). Such a result is rather intuitive but nevertheless interesting:

88



6.3. Dynamical studies of the systems

arbitrage operations on the futures contracts related to the same underlying asset are

easy and rapidly undertaken, resulting in a perfect ordering of the maturity dates.

Even if the topology of the spatial and 3-D trees seems similar, they are quantitatively

different. The allometric exponent for the three-dimensional is higher: the best fit from

our data gives an exponent close to 1.757, which must be compared to the value of 1.493

for the spatial case. Thus, the topology of our system, in 3-D, is rather complex. It is the

result of two driving forces: the star-like organization induced by the spatial dimension

and the chain-like organization arising from the maturity dimension.

6.3 Dynamical studies of the systems

Because they are based on correlation coefficients, our Minimum Spanning Trees are

intrinsically time dependent. Therefore, its is necessary to study the time dependent

properties of the graphs. On the basis of the entire graph, firstly we examined the dy-

namical properties of the correlation coefficients, as well as the node’s strength, which

provides information on how far a given node is correlated to the other nodes. In order to

study the robustness of the topology of the MST, we then computed the graph’s length,

which reveals the state of the system at a specific time. Lastly, survival ratios indicate

how the topology of the trees evolves over time. In what follows, we retained a rolling

time window with a size of ∆T = 480 consecutive trading days.

6.3.1 Correlation coefficients

In order to examine the time evolution of our system, we investigated the mean corre-

lations of the returns and their variances ([83]). The mean correlation CT (t) for the

correlation coefficient ρTij in a time window [t−∆T, t] can be defined as follows:

CT (t) =
2

N (N − 1)

∑

i<j

ρTij (t) , (6.5)
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Figure 6.4: Correlation coefficients in the spatial dimension. Figure (a): Mean of the
correlation coefficients; Figure (b): Variance of the correlation coefficients.

The variance σ2
C (t) of the mean correlation is given by:

σ2
C (t) =

2

N (N − 1)

∑

i<j

(
ρTij (t)− CT (t)

)2
. (6.6)

Figure (6.4) represents the mean correlation and its variance on the spatial dimension. It

shows that the mean correlation of the prices system increases over time, especially after

2007. The variance exhibits a similar trend. Moreover, it reaches its maximum on the

09/19/2008, four days after the Lehman Brothers’ bankruptcy.

We then examine the maturity dimension. Firstly, we focus on the statistical properties

of the correlation coefficients of two futures contracts, represented by Figure (6.5). They

are very different for these contracts. The maturities of Brent crude oil (LLC ) are more

and more integrated over time: at the end of the period, the mean correlation is close to 1.

Such a trend does not appear for the eurodollar contract (IED). This is consistent with the

peripheral position of the interest rate market in the correlation landscape. As far as crude
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Figure 6.5: Correlation coefficients in the maturity dimension for the eurodollar IED
(dashed lines) and the Brent crude oil LLC (black lines). Figure (a): Mean of the corre-
lation coefficients; Figure (b): Variance of the correlation coefficients.

oil is concerned, the level of integration becomes so strong that the variance decreases and

exhibits an anti correlation with the mean correlation. The result was totally different in

the spatial case: the mean correlation and its variance where correlated ([69]) also observe

such a positive correlation during prices growth and financial crises).

Figure (6.7) summarizes the statistical properties of the mean correlations and variances

for the 14 markets, on the maturity dimension. It confirms that, for almost every contract,

the mean correlation is very high and anti correlated with the mean variance. The two

natural gases however exhibit more specific figures. Their correlation level is quite low,

when compared with other markets, especially for London Natural Gas. Meanwhile, their

mean variance is high.

Merging space and maturity, in three dimensions, we also observe an important rise in

the mean correlation and variance, as shown in Figures (6.6)-a and (6.6)-b. Moreover,

these values are correlated.
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Figure 6.6: Correlation coefficients in three dimensions. Figure (a): Mean of the correla-
tion coefficients. Figure (b): Variance of the correlation coefficients.

6.3.2 Node’s strength

The node’s strength, calculated for each node i, indicates the closeness of one node i to

the others. It is defined as follows:

Si =
∑

i 6=j

1

dij
. (6.7)

In our case, the node’s strength provides information on the intensity of the correlations

linking a given node to the others. When Si is high, the node is close to the others.

Figure (6.8) represents the time evolution of the node’s strength for each node within the

fully connected graph, in the spatial dimension. The figure has been separated into four

panels: the energy sector is at the top, with American products on the left and European

products on the right, the agricultural sector is at the bottom left and financial assets are
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Figure 6.7: Correlation coefficients in the maturity dimension. Mean correlation coeffi-
cients and their variances for all markets.

93



Chapter 6. Analysis of the systemic risk in the spatial, maturity and spatio-maturity dimensions

17-01-2004 09-07-2009

t10

12

14

16

S
NNG
NCL
NHO

(a)

17-01-2004 09-07-2009

t10

12

14

16

S
LNG
LLE
LLC

(b)

17-01-2004 09-07-2009

t10

12

14

S
CBO
CS
CW
CC

(c)

17-01-2004 09-07-2009

t
9

10

11

12

S
IED
ISM
NGC
CEU

(d)

Figure 6.8: Nodes strength of the markets in the spatial dimension. Figure (a): Amer-
ican energy products. Figure (b): European energy products. Figure (c): Agricultural
products. Figure (d): Financial assets.

at the bottom right.

Figure 6.8) prompts the following remarks: at the end of the period, out of all the assets

studied, the two crude oils and American heating oil show the greatest node’s strength.

These are followed by soy oil (CBO), other agricultural assets, the S&P500 contract
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Figure 6.9: Node strength in the maturity dimension, for three maturities. Figure (a):
Eurodollar IED. Figure (b): Brent LLC (b).

(ISM ), gold (NGC ), the euro dollar exchange rate (CEU ) and European gas oil (LLE ).

The more distant nodes are those representing the eurodollar (IED) and natural gases

(NNG and LNG).

When the time evolution of this measure is concerned, the sector shows different patterns:

the integration movement, characterized by an increase in the node’s strength, emerges

earlier for the energy sector than for the agricultural sector. However, it decreases for

energy at the end of the period, which is not the case for agricultural products. Moreover,

the agricultural sector behaves very homogeneously, with a high increase after October

2005. Last but not least, most of the products exhibit a strong increase, except for natural

gases and interest rate contracts. Thus, whereas the core of the tree becomes more and

more integrated, the peripheral assets do not follow this movement.

As far as the maturity dimension is concerned, it was not possible to represent the node’s

strength for all futures contracts. Moreover, the computation of mean node’s strength, on

all maturities for each contract, would lead to the same kind of results as those provided by
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Figure (6.7). Therefore, we again retained, the Brent crude oil (LLC ) and the eurodollar

contract (IED) examples. We then chose three delivery dates for these contracts, as

shown in Figures (6.9)-a and (6.9)-b. The first maturity is drawn with a fine line, the

last maturity with a wide line and the intermediary maturity with a medium width line.

All the observed nodes’ strength grow over time, except for the first eurodollar (IED)

maturity. Moreover, in each case, the strongest node is the one which corresponds to the

intermediary maturity, whereas the weakest one represents the first maturity.

6.3.3 Normalized tree’s length

Let us now examine some of the properties of the filtered information. The normalized

tree’s length can be defined as the sum of the lengths of the edges belonging to the MST:

L (t) =
1

N − 1

∑

(i,j)∈MST

dij, (6.8)

where t denotes the date of the construction of the tree and N − 1 is the number of edges

in the MST. The length of a tree is longer as the distances increase, and consequently

when correlations are low. Thus, the more the length shortens, the more integrated the

system is.

Figure (6.10)-a represents the dynamic behavior of the normalized length of the MST in

its spatial dimension. The general pattern is that the length decreases, which reflects the

integration of the system. This information confirms what was observed on the basis of

the node’s strengths. However we must remember that we are now analyzing a filtered

network. Thus, what we see on Figure (6.10)-a is that the most efficient transmission

path for price fluctuations becomes shorter as times goes on. From a systemic point of

view, this means that a prices shock will be less and less absorbed as it passes through

the tree. A more indepth examination of the graph also shows a very important decrease

between October 2006 and October 2008, as well as significant fluctuations in September
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Figure 6.10: Spatial dimension. Figure (a): Normalized tree’s length. Figure (b): Survival
ratios.

and October 2008. We leave the analysis of such events for future studies.

In the maturity dimension, as integration increases, the normalized tree’s length also

diminishes. This phenomenon is illustrated by Figures (6.11)-a and -b, which represent

the evolutions recorded for the eurodollar contract (IED) and for Brent crude (LLC ).

As far as the interest rate contract is concerned, the tree’s length first increases, then in

mid-2001 it drops sharply and remains fairly stable after that date. For crude oil, the

decrease is constant and steady , except for a few surges.

Figure (6.12) summarizes the main results concerning the tree’s length for each futures

contract. However, it is not easy to compare the tree’s lengths of futures contracts when

the latter have a different number of delivery dates.

6.3.4 Survival ratios

The robustness of the MST over time is examined by computing the single step survival

ratio of the links, SR. This quantity refers to the fraction of edges in the MST, that
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survives between two consecutive trading days ([68]):

SR (t) =
1

N − 1
|E (t) ∩ E (t− 1)| . (6.9)

In this equation, E(t) refers to the set of the tree’s edges at date t, ∩ is the intersection

operator, and | . | gives the number of elements contained in the set. Under normal

circumstances, the topology of the trees, between two dates, should be very stable, at

least when of the window lengths parameter ∆T presents small values. While some

fluctuations of the survival ratios might be due to real changes in the behavior of the

system, it is worth noting that others may simply be due to noise. In this study, we

mostly examine the presence of trends in the way these ratios evolve.

Figure (6.10)-b represents their evolution in the spatial dimension. Most of the time,

this measure remains constant, with a value greater than 0.9. Thus, the topology of the

tree, in the spatial dimension, is very stable. The shape of the most efficient path for the

transmission of prices shocks does not change much over time. However, it is possible to

identify four events where 1/4 of the edges has been shuffled. Such a result also calls for

further investigation, as a reorganization of the system can be interpreted as the result of

a prices shock.

In the maturity dimension, Figures (6.11)-a and -b exhibit different patterns for crude oil

(LLC ) and interest rates (IED). As far as crude oil is concerned, while the trees shrink

in the metric sense, the organization of the MST is very stable. Few events seem to

destabilize the edges of the trees, except for the very end of the period, i.e. from the end

of 2008. Again, what happens on the eurodollar is totally different. In mid-2001, around

the time of the internet crisis, when the length of the tree increases, the tree also becomes

more spaced out. This sparseness comes with an important amount of reorganizations,

and fluctuations in the survival ratio are greater as the length increases.

A more complete view of what happens in the maturity dimension is offered by Figure

(6.12). It exhibits the high level of stability of the trees in the way delivery dates are
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Figure 6.11: Maturity dimension, normalized tree’s length and survival ratios for the
eurodollar IED (a) and the Brent LLC (b)

organized.

Lastly, as far as the 3-D trees are concerned, the survival ratios do not give any further

information than in the spatial and maturity dimension. However, a more specific analysis

of these trees, based on a pruning method, provides some interesting results.

6.3.5 Mean occupation layer

We then present the time evolution of the mean occupation layer. This measure charac-

terizes the topological compactness of the tree which usually shrinks, topologically, during

crashes. This effect could be measured as a decrease of L(t). The time evolution for three

integration are presented on Figure (6.13). For the spatial integration (dashed line of

Figure (6.13)-a, and the spatio-maturity integration (black line of Figure (6.13)-a. As

observed by the authors of [83], there are fluctuations but no constant trends for the

value. For the maturity integration, represented by Figure (6.13)-b, we can observe that

the eurodollarIED becomes sparser with a sudden jump, while the Brent crude oil LLC
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Figure 6.12: Table summarizing the mean normalized tree’s length and the mean survival
ratio of the minimum spanning trees in the maturity dimension, for all markets.
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Figure 6.13: Mean occupation layer. Figure (a): Three-dimensional integration (black
line) and spatial integration (dashed line); Figure (b): Maturity integration for the eu-
rodollar IED (black line) and the Brent crude oil LLC (dashed line).

is constant in time with an important fluctuation in the end of the period.

6.3.6 Pruning the trees

As far as the stability of the trees is concerned, especially in 3-D, when focusing on the

whole system, it is interesting to distinguish between reorganizations occurring in a spe-

cific market, between different delivery dates of the same contract, and reorganization

that changes the nature of the links between two markets or even between two sectors.

Equation (6.9) however gives the same weight to every kind of reorganization, whatever its

nature. The trouble is, a change in intra-maturity links does not have the same meaning,

from an economic point of view, as a movement affecting the relationship between two

markets or sectors. As we are interested, at least initially, in strong events affecting the

markets, inter markets and inter sectors reorganizations seem more relevant. Thus, in or-

der to distinguish between these categories of displacements, we decided to prune the 3-D
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Figure 6.14: Pruned minimum spanning trees of the events 09/02/2004 (left panel) and
16/09/2008 (right panel).

trees, i.e. to only consider the links between markets, whatever the maturity considered.

This does not mean, however, that maturity is removed from the analysis. It signifies

that with pruned trees, the information on the specific maturity that is responsible for

the connexion between markets is no longer relevant. Such trees enable us to compute

the survival ratios on the sole basis of market links.

Figure (6.15)-a displays the survival ratio of the reduced trees. As observed previously,
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the ratio is fairly stable. However, several events cause a significant rearrangement of the

tree. This is the case, for example, for two specific dates, namely 02/09/04 and 09/16/08.

A brief focus on these two dates shows that the tree is totally rearranged. In 2004, the

trees become highly linear, the financial assets sector is at the center of the graph, and

commodities appear mainly at the periphery of the system. Conversely, in 2008, the tree

has a typical star-like shape showing an organization based on the different sectors stud-

ied.

Another interesting characteristic of the pruned survival ratios is that they provide infor-

mation on the length of periods of market stability. Over the entire period of our study,

we measured the length of time τ corresponding to a stability period, and we computed

the occurrences N (τ) of such periods. Figure (6.15)-b displays our results. It shows that

N (τ) decreases strongly with τ , with a possible power law behavior, as shown in the

log-log scale inset of Figure (6.15)-b. There are few stable periods that last a long time,

and much more stable periods that last a short time. We need to refine the former result,

but if such a power law is confirmed, it will mean that the markets can have stable periods

of any length.

Finally, another interesting result lies in the analysis of those links which are most

frequently responsible for the reorganization of the trees. With fourteen markets, there

are ninety one links in our system. Some of them - twenty six - never appear. Among

the remaining sixty- five trees, some appear very frequently and, on the contrary, others

display very few occurrences. Figure (6.16) reproduces these two categories of links and

the frequency in which they appear in the MST. The most robust links have a frequency

equal to one, which means that the links are always present. They mainly correspond to

the agricultural sector, with the following pairs: wheat and corn (CW -CC ), soy beans

and corn (CS -CC ), soy oil and soy beans (CBO-CS ). The link between gold and the

euro-dollar exchange rate (NGC -CEU) is also always present. As expected, the relation-

ships between the two crude oils (NCL-LLC ) are very stable, with a frequency greater
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Figure 6.15: Properties of pruned trees. Figure (a): Survival ratio. Figure (b): Number
of occurrences of stable periods of length τ . Inset: same as Figure (b), but in log-log
scale.

than 0.9. The same is true for the links between the interest rates and the exchange rate

(IED-CEU ), which is also rather intuitive, from an economic point of view, as interest

rates are embedded in forward exchange rates. The other tail of the curve contains ten

links characterized by a frequency lower than 0.01. The lowest values correspond to the

association of interest rates and gas oil and that of interest rates and gold.

6.4 Conclusion

In this chapter, we study the question of systemic risk in energy derivative markets based

on two choices. First we focus on market integration, as it can be seen as a necessary

condition for the propagation of a prices shock. More specifically, we focus on the simul-

taneous correlations of price returns. Secondly, based on the fact that previous studies

mainly focused solely on the spatio-temporal dimension of integration, we introduce a
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Figure 6.16: Frequency of links apparition in the pruned minimum spanning trees. Figure
(a): frequency lower than 0,012. Figure (b): frequency greater than 0,25.

maturity dimension analysis and we perform a three-dimensional analysis.

The visualization of the MST first shows a star-like organization of the trees in the spatial

dimension, whereas the maturity dimension is characterized by chain-like trees. These two

topologies merge in the three-dimensional analysis, but the star-like organization still dom-

inates. The star-like organization reproduces the three different sectors studied: energy,

agriculture and finance, and the chain-like structure reflects the presence of a Samuelson

effect. These intuitive results are very important, as they are a key justification for the

use of our methodology.

The American and European crude oils are both found at the center of the graph and

ensure the links with agricultural products and financial assets. Thus the first conclusion

of importance that we come to is that crude oil is the best candidate for the transmission
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of prices shocks. If such a shock appears at the periphery of the graph, unless it is ab-

sorbed quickly, it will necessarily pass through crude oil before spreading to other energy

products and sectors. Moreover, a shock will have an impact on the whole system that

will be all the greater the closer it is to the heart of the system.

Another important conclusion is that the level of integration is more important in the

maturity dimension than in the spatial one. Once again, this result is intuitive: arbitrage

operations are far easier with standardized futures contracts written on the same under-

lying asset than with products of different natures such as corn bushels and interest rates.

The analysis of how this level evolves over time shows that integration increases signifi-

cantly on both the spatial and maturity dimensions. Such an increase can be observed on

the whole prices system. It is even more evident in the energy sector (with the exception

of the American and European natural gas markets) as well as in the agricultural sector.

The latter is highly integrated at the end of our period. Lastly, as far as the financial

sector is concerned, no remarkable trend can be highlighted. Thus, as time goes on, the

heart of the price system becomes stronger whereas where the peripheral assets are found

does not change significantly.

Last but not least, the dynamic analysis also reveals, by using survival ratios, that the

system is fairly stable. This is true, except for specific events leading to important recon-

figurations of the trees and requiring a specific analysis. We leave these studies for future

analyses.

Such results have very important consequences, for regulatory as well as for hedging and

diversification purposes. The move towards integration started some time ago and there

is probably no way to stop or refrain it. However, knowledge of its characteristics is

important, as regulation authorities may act in order to prevent prices shocks from occur-

ring, especially in places where their impact may be important. As far as diversification

is concerned, portfolio managers should probably focus on the less stable parts of the

graph. The links in the trees which change the most should be the best candidates for
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diversification opportunities. Lastly, one important concern for hedging is the informa-

tion conveyed by futures prices and its meaning. The increasing integration of derivative

markets is probably not a problem for hedging purposes, unless a prices shock appears

somewhere in the system. In such a case, the information related to the transmission path

of the shock is important, as prices might temporarily become irrelevant.
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In the previous chapters of this report, an appropriate methodology for understanding

systemic risk, graph theory, has been identified. By using this approach, and more specif-

ically by relying on Minimum Spanning Trees, we have been able to show the pathways

by which price shock waves can be transmitted. Now, we are looking for a method for di-

rected graphs, which would allow us to study the direction in which price fluctuations are
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propagated. Two kinds of methods are investigated: the Granger methodology (chapter

6) and the concept of conditional entropy (chapter 7).

Granger’s methodology allowed us to study the causality relationships between the prices

returns. Such methods are regularly used in finance for the study of prices relationships.

In this chapter, we first present the methodology of Granger causality tests. We then

present the supplementary markets and data used for this study. In addition to the crude

oil prices extracted from the American and British markets and to the American natu-

ral gas and, we indeed use futures prices on carbon, coal and electricity. As far as we

know, it is the first attempt at examining the integration of carbon markets within a wide

range of energy markets. Finally, we present our results and compare them with what

can be obtained through the use of minimum spanning trees. This chapter relies on a

common work with Amine Aouad, a student at University Paris-Dauphine, who studied

such questions for his master thesis, from March to September 2010.

7.1 ⋆The methodology of Granger tests

In order to establish a hierarchy of direct and indirect influences between different financial

time series, Granger tests look at causality in the sense of the precedence between the time

series of two stationary variables. Thus, even well-established Granger causality does not

imply causality in the sense of an unavoidable logical link. They rather give the direction

of inter-temporal precedence.

The name of the method comes from the first causality tests performed by C. Granger

([38]) in the late sixties. It analyses the extent to which the past variations of one variable

explain or precede subsequent variations of the other variable. It tests pairwise causal

linkages and aims to determine if a variable Xt Granger-causes another variable Yt (and

vice et versa). All permutations are possible:

• Univariate Granger causality, from Xt to Yt or from Yt to Xt
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• Bivariate Granger causality, from Xt to Yt and from Yt to Xt

• no Granger causality

Formally, the Granger causality tests analyse whether the unrestricted equation:

Yt = α0 +
T∑

i=1

α1iYt−i +
T∑

j=1

α2jXt−j + ǫt, (7.1)

yields to better results than the restricted equation:

Yt = β0 +

T∑

i=1

β1iYt−1 + ǫt. (7.2)

where ǫt are uncorrelated random variables with zero mean and variance σ2. If the null-

hypothesis H0, in which all α2j = 0, is rejected, then one can state that variable Xt

Granger-causes the variable Yt.

On a methodological point of view, results of Granger tests are sensitive to the number

of lags specified. In principle, one should include the maximum of lags over which an

economically meaningful relationship between to variables may exist. In our case, we fixed

this lag to one month. Moreover, since using Granger causal tests with non-stationary

data can lead to spurious causal linkages, the time series need first of all to be rendered

stationary. In order to obtain stationary series, we thus used differenced returns. Finally,

there is a need to fix the degree of precision retained for the validation / rejection of the

null-hypothesis. We fixed this threshold at 0.1. Thus, for a probability lower than this

figure, the null-hypothesis H0 is rejected.

7.2 ⋆Carbon, coal and electricity markets: an overview

In this section, we present the thee supplementary energy markets used in this study, that

is to say carbon, coal and electricity.
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7.2.1 ⋆Carbon data

Figure 7.1: EUA Bluenext Spot prices. Source: Bluenext webpage
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In order to collect carbon data we choose Bluenext prices. This exchange indeed

is nowadays the most important spot market for carbon in Europe, as far as transac-

tion volumes are concerned. The main problem with the carbon market is that it was

launched recently. We thus only have a short period for the study of this market: from

the 02/26/2008 to the 06/30/2010 (fig (7.1)). Thus our period starts with the Phase II

of the EU European Trading Scheme (ETS).

The Bluenext EUA spot prices have a minimum fluctuation price that is fixed to 0.01

euro per ton. These prices are written on 1000 tons of carbon dioxide emissions and

the delivery as well as the settlement are operated by Bluenext in real time. Delivery

only consists in the transfer of the underlying from the seller’s to the buyer’s account via

Bluenext transit account in the registry of EUA. For this specific commodity, there are

no physical costs of storage nor transportation costs.

Figure ?? represents the time evolution of the carbon EUA spot prices between February

2008 and June 2010. In the beginning of our study period, the prices’ level stands at

20 euros. It reaches its maximum at 28.73 euros on the 1st of July and then decreases

regulary during 8 months towards a minimum, which is reached on February the 16th,

2009, at 8.24 euros. This decreasing pattern is due to the low emission level originated by

energy producers, and more particulary electricity producers. The latter indeed did not

buy extra CO2 emissions allowances during the period. Then a cold winter has lead to a

prices’ increase around the mean value of 13.61 euros. Another decrease can be observed

at the end of 2009 due to instutitional factors and more specifically to the disappointing

Copenhagen summit. Finally there is a last increase, from April-May 2010 to the end of

the study period despite a the wide excess of distributed allowances. The main explana-

tion for this phenomenom is the increasing demand stemming from european electricity

producers, who anticipate a high energy consumption and hence increasing carbon prices.
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Figure 7.2: ARA Coal front month futures prices. Source: Bloomberg

7.2.2 ⋆Coal data

We selected the ARA ( Amsterdam-Rotterdam-Antwerp) coal front month futures con-

tract, traded on the European Energy Exchange, from 02/26/2008 to 06/30/2010 (fig
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(7.2)). The monthly coal price index of API 2 (CIF ARA) serves as the underlying asset

for the ARA futures. This index is calculated on the basis of the spot market prices for

physically delivered coal. It corresponds to the criteria of calorific value of at least 6000

kcal per kg, to less than 1% sulphur, and to a delivery within the next 90 days. The index

is normally published on the last Friday of every month in the Argus/McCloskey’s Coal

Price Index Report.

ARA coal futures contracts can be traded for several delivery periods in the future: the

current month on which the coal delivery has already begun, the next six months, the

next seven quarters and the next six years. The contract’s volume of the ARA coal fu-

tures amounts to 1000 tons per month. Finally, the futures are settled by means of cash

settlement on the basis of the Argus/McCloskey’s Coal Price Index.

7.2.3 ⋆Electricity data

As far as electricity is concerned, we selected the Nordic base load futures, on the Nord

Pool Exchange, from 02/26/2008 to 06/30/2010 (fig (7.3)). This exchange is divided into

Eltermin and Eloption where futures, forwards, contracts for difference and options are

traded. Since the autumn of 1995, all these products are cash settled. The trading time

horizon is up to four years. All contracts positions can held until maturity or be closed at

any time via a countertrade. NECH is the obligatory clearing institution for all products

traded on Nord Pool and also clears a substantial proportion of financial contracts in the

bilateral markets. Moreover, the delivery time starts after expiration of the contracts, and

the futures are settled mark-to-market from the day on which the contract is purchased.

Besides, forwards contracts accumulate the price differences untill the delivery period

and the difference between agreed price and market price is settled in equal shares each

day. Experiences on the OTC market and in the exchange have shown that, for large

periods, forwards without daily settlements are preferred, while for short-time contracts

mark-to-market procedures seem to be more attractive. Hence, the forward contracts
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Figure 7.3: Nordic Pool base load electricity futures prices. Source: Bloomberg

now listed at Nord Pool cover larger delivery periods, seasons and years, while the futures

contracts cover delivery periods of days, weeks and blocks (ie four or five weeks). Four

weeks before delivery time, block contracts are split into weeks contracts, and 10 days
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Null Hypothesis Proba. Null Hypothesis Proba.

Carbon does not GC WTI 0.56613 Brent does not GC Carbon 0.02442
WTI does not GC Carbon 0.00585 Carbon does not GC Brent 4.7E− 09

Nat. gas does not GC Carbon 0.04270 Coal does not GC Carbon 4.4E− 05
Carbon does not GC Nat. gas 0.30923 Carbon does not GC Coal 0.63749

WTI does not GC Brent 9.6E− 05 Brent does not GC Coal 0.04542
Brent does not GC WTI 0.26170 Coal does not GC Brent 0.00205

Elec. does not GC WTI 0.37903 WTI does not GC Coal 0.03722
WTI does not GC Elec. 0.01572 Coal does not GC WTI 0.00213

Nat. gas does not GC Coal 0.07812 WTI does ot GC Nat. gas 0.02744
Coal does not GC Nat. gas 0.58283 Nat. gas does not GC WTI 0.68208

Brent does not GC Elec. 0.05237 Brent does not GC Nat. Gas 0.04479
Elec. does not GC Brent 0.37342 Nat. gas does not GC Brent 0.01631

Elec. does not GC Coal 0.06116
Coal does not GC Elec. 0.51961

Table 7.1: Granger causality tests results. For probability less than 0.1 the null hypoth-
esis is rejected and hence the first variable Granger Cause (GC) the second. The red
color indicates that the hypothesis is rejected while the blue color occurs when the null
hypothesis is rejected for the two tests.

before delivery time, the week contracts are again split into day contracts. Before delivery

time, the contracts are daily mark-to-market settled, the difference of the closing price of

a contract from one day to another is credited or debited on the account of the contract

holder.

7.3 ⋆Granger Causality tests

In order to test the interplay between carbon spot prices and other energy prices, we

performed causality tests through a set of pairwise relationships. We first examined the

links between carbon and crude oil, then those associating carbon and natural gas, coal

and electricity. In order to obtain a complete causal landscape, we next tested the causal

relationship within the other energy markets.

The different causal linkages identified, illustrated by TABLE (7.1), give rise to an
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interesting interplay between our six energy markets, which reveals a coherent picture

consistent with both economic and practical considerations.

The first causality link focuses on the relationships between carbon spot prices and crude

oil futures prices. We observe that the Granger causality runs from the crude oil fu-

tures markets to the carbon market. The impact is very clear for the Light Sweet crude

oil front month futures: the probability that crude prices do not cause carbon prices is

almost zero. Of course, this result is not unexpected given that carbon markets are rela-

tively recent markets compared to the American crude oil which is one of the most liquid

worldwide. Moreover, the carbon markets are essentialy regional whereas the crude oil

markets are global. As far as the European quality of crude oil is concerned, the causality

is bivariate. Since Brent is a North Sea crude oil available for tanker loading at Sullum

Voe on Shetland islands (Scotland), there might be a geographical explanation for this

bidirectionality. Indeed, CO2 emissions allowances are bought by European industrials

who consider Brent futures prices as their major benchmark. Furthermore, Bataller and

Soriano ([53] have observed that the behavior of Brent returns volatility is similar to that

of carbon. Another interesting result is the strong and univariate causality from Light

Sweet Crude oil to Brent.

The second set of causality links examines the relationships between, on the one hand,

natural gases and coal, and carbon on the other hand. Natural gases and coal are both

inputs for power production and their relative prices determine opportunities for fuel

switching. Quite intuitively, we found that they Granger cause the price of CO2 emis-

sions allowances; the impact is immediate and clear. The probability for natural gases

futures prices not causing carbon prices is 0.04270, which denotes statistically significance

at 5% level. The univariate Granger causality from coal to carbon is even stronger, as the

probability for coal futures prices not causing carbon spot prices is 4.4E− 05, indicating

thus statistically significance at 1% level. Note that the coal is traded on an integrated

global market, contrary to the European Union CO2 emissions allowances.
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Our results concerning the linkages between carbon, crude oil and natural gas prices are

consistent with the findings of [53]. This authors indeed observed that the volatility of

carbon returns is directly affected by that of Brent and natural gas. We however com-

plete their findings and indicate that the carbon spot market can be affected by shocks

originated from the crude oil, natural gas and coal markets. Moreover, there is a strong

bivariate relationship between Brent returns and those of coal and natural gases.

Our unexepected result is the absence of Granger causality between electricity and car-

bon spot markets. Bataller et al have found that the impact of carbon futures prices on

electricity is clear, since the start of the transactions over any number of lags. According

to these authors, such a result means that the carbon price is today part of the long-term

cost of generating electricity. Our results however do not mean that there is no interaction

between electricity and carbon markets. Electricity indeed remains the main driver of coal

markets which in return Granger Cause carbon prices movements. The tests show that

the probability for electricity not causing coal returns is 0.06116 and that the probability

for coal no causing electricity is 0.51961. Finally, another interesting result is the strong

relationship from crude oil to electricity. The two crudes are involved in Granger causality

with electricity. The probabilities are respectively 0.01572 and 0.05237.

So the causality relationships identified herein give rise to an intersting landscape of causal

linkages between the main energy markets during the Phase II of the EU ETS. Undoubtly,

crude oil futures are at the heart of the interplay structure as they drive carbon spot prices,

as well as natural gas, coal and electricity futures. Coal and the two natural gases are

also major drivers of carbon prices.
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7.4 ⋆Conclusions

In this chapter, we have used Granger analysis to investigate the interplay between a

new manmade commodity, that is to say carbon markets, and the main energy markets,

namely the two most important crude oil markets, natural gases, coal and electricity.

We have found evidence of strong and immediate causality links running from crude oil

to carbon returns. Moreover, the Light Sweet Crude and the Brent both drive (in the

Granger sense) natural gas, coal as well as electricity. In return, coal and natural gas

markets similarly affect carbon markets. These results reveal a coherent picture, which

is consistent with economic and practical considerations and confirm previous findings.

They give evidence of a level of integration within the energy markets under scrutiny.

Finally, our most important result is that, once again, prices for crude oil futures are at

the center of the web that different commoditiy prices maintain with each other. Hence,

as integration can be seen as a condition for the transmission of prices fluctuations, and

thus shocks, the regulator should pay close attention to crude oil as if a shock comes from

there, it will have an impact (In the Granger sense) on the whole energy markets.
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In the previous chapter, we have presented a method aiming at identifying causal links

between pairwise time series. We now propose an alternative way to determine the direc-

tionality between time series, on the basis of probabilistic measures. Compared with the

Granger causality, the main interest of this new method is that it allows for quantifying,

first the amount of mutual information shared between two time series and second, the

degree of information transferred from one to the other. Understanding the circulation of

the flow of information between derivatives markets is decisive for the study of systemic

risk : a shock can indeed be seen as a specific kind of information. To achieve such a goal

is however extremely difficult.
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In what follows, we first of all expose the new methodology used in this part of the study.

To the best of our knowledge, it has never been used for the analysis of financial time

series. We then present our first results. Up to now, we worked only on the maturity

dimension, on the crude oil market. This choice is motivated by the temporal ordering of

the maturities, that helps us to understand how the flow of information between maturi-

ties behaves, and by the fact that the Light Sweet crude oil market is the most important

energy derivative market.

8.1 ⋆Methodology

An alternative method to Granger Causality that can be used, among others, to detect

directionality between time series, is based on the information theory and the concept

of entropy. In this section, we will first recall of some basic definitions on information

theory. We then present the notions of entropy, mutual information and conditional mu-

tual information. We finally propose a directionality index, based on conditional mutual

information.

Let us start with the definition of differential entropy, introduced by Shannon ([82]) in

1948. For a continuous random variable X with a probability density function (pdf) p (x),

the differential entropy is given by:

H (x) = −
∫

p(x) log p(x)dx. (8.1)

For discrete N random variables Xi with a probability pi, the entropy is defined in its

discrete version as:

H (X) = −
N∑

i=1

pi log pi. (8.2)
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The average amount of information gained from a measurement that specifies one partic-

ular value Xi is given by H (X). This measure can be seen as the quantity of surprise

one should feel upon reading the result of a measurement and the uncertainty of X.

For discrete random variables, the joint entropy is defined as:

H (X, Y ) = −
NX∑

i=1

NY∑

j=1

p (xi, yj) log p (xi, yj) , (8.3)

where p (xi, yj) is the joint probability that X is in the state xi and Y in the state yj

and NX (resp. NY ) is the length of X (resp. Y ). If X and Y are independent, the joint

entropy can be rewritten:

H (X, Y ) = H (X) +H (Y ) . (8.4)

In general, the joint entropy can be expressed in term of conditional entropy:

H (X, Y ) = H (X|Y ) +H (Y ) , (8.5)

where H (X|Y ) is the conditional entropy defined as:

H (X|Y ) = −
NX∑

i=1

NY∑

j=1

p (xi, yj) log p (xi|yj) , (8.6)

and p (xi|yj) is the conditional probability. The joint entropy gives the degree of uncer-

tainty remaining in X when Y is known. Using the former definitions, we can express the

mutual information between X and Y :

I (X ; Y ) = H (X) +H (Y )−H (X, Y ) . (8.7)

The mutual information of two variables expresses the mutual reduction of uncertainty

of one by having the knowledge of the other one. This measure is positive since the joint
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entropy fulfills the inequality H (X, Y ) < H (X)+H (Y ) (and the equality if X and Y are

independent). The mutual information gives the degree of dependence of two variables.

If the two variables are independent then the mutual information is equal to zero and if

the joint probability is normally distributed the mutual information can be expressed in

term of correlations:

I (X ; Y ) = −1

2
log

(
1− ρ2XY

)
. (8.8)

Figure (8.1) illustrates the previous definitions. We then turn our attention to the

conditional mutual information between the random variables, that can be calculated

with the following set of equations:

IδX→Y = I (X ; Yδ|Y ) = H (X|Y ) +H (Yδ|Y )−H (X, Yδ|Y ) , (8.9)

and

IδY→X = I (Y ;Xδ|X) = H (Y |X) +H (Xδ|X)−H (Y,Xδ|X) , (8.10)

where Xδ (resp. Yδ) is an observable derived from the state of the process X (resp. Y ) δ

steps in the future. The information that is transferred from X to Y at some later points

later is defined as:

IX→Y =
1

N

N∑

δ=1

IδX→Y , (8.11)

and from Y to X:

IY→X =
1

N

N∑

δ=1

IδY→X , (8.12)

where N is the maximal later points. Based on the conditional mutual information, it is

possible to define a directionality index DXY as follows:

DXY =
IX→Y − IY→X

IX→Y + IY→X

. (8.13)
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Figure 8.1: Joint entropy, conditional entropies, individual entropies and mutual infor-
mation of two random variables X and Y . Source: Wikipedia
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By construction, DXY ranges from −1 to 1. If DXY is greater than zero, then it means

that X drives Y and if DXY is less than zero Y drives X. If the directionality index is

equal to zero, the interactions between the two processes are symmetrical.

8.2 ⋆Empirical results on information transfer

This section presents our first empirical results on the analysis of the information transfer

between derivatives markets. As far as we know, this methodology has never been used in

the context of financial markets. On the basis of such a tool, our goal is to understand the

mechanisms that drive the flow of informations between derivatives in three dimensions,

namely time, space and maturity. For the moment, however, we have restricted our study

in the maturity dimension. Moreover, we present preliminary results only for the Light

Sweet crude oil. These choices are motivated, firstly by the fact that the temporal order-

ing of the maturities helps us to understand how the flow of information moves between

maturities and secondly by the fact that the Light Sweet crude oil is the most important

energy derivative market.

8.2.1 ⋆ Mutual information

The mutual information between two variables measures the information that is shared

between these two variables and the dependance between the joint distribution. Figure

(8.2-a) represents the mutual information of the Light Sweet Crude oil. We have expressed

this measure as a function of the correlations. We motivate this choice since the only

analytical known result is obtained in term of correlations for normally distributed joint

variables. We observe that the mutual information diverges strongly from the normal

case even for highly correlated maturities; the degree of shared information is less than

for gaussian joint random variables. For each maturity we have computed (over other
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Figure 8.2: Mutual information of the Light Sweet crude oil. (a) Mutual information
IXY as a function of the correlation CXY between the maturities X and Y (the dashed
line corresponds to the case of normal joint distribution between X and Y ); (b) average
mutual information for each maturity M

maturities) the average mutual information < IXY >. This measure gives information

about how much a maturity shares, in average, information with the others. We observe

that the maturities which, in average, have the highest level of mutual information are

the intermediate maturities. This result is in agreement with our previous findings about

the landscape of cross correlations in the maturity dimension (Fig. (8.2-b)).

8.2.2 ⋆Segmentation of the driving information

We have seen at the beginning of this section, that conditional mutual information can be

used to determine the directionality of the information between random variables. The

two terms (8.9) and (8.10) give the degree of information transferred from one variable

to another. That is to say, in the maturity dimension, from one maturity to another.

Hence, we can compute an index Di that gives the level of information emitted from the
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Figure 8.3: Average emitted flow of information for each maturity M .

maturity i:

Di =
∑

j

Iδi→j, (8.14)

where δ is chosen in order to maximize Iδi→j . Figure (8.3) represents the value of Di as

function of the maturity i. We observe a sharp transition between the maturities 21 and

22 months. This result implies that the maturities below 21 months are those responsible

of the flow of information. In other words, most of the information is received by the

maturities with late delivery date. In this study, we have used the whole time period to

compute the conditional mutual information, but it will be very interesting to reproduce

the same measurement with sliding windows in order to detect if there are specific time

periods when information is emitted from the end of the term structure.
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8.2.3 Conclusion

We have presented in this section some preliminary results on information transfer be-

tween maturities for the LightSweet crude oil. We have circumscribed this analysis in

the maturity dimension, since the temporal organization of the maturities is easier to

understand the spatial organization of the derivatives, and for the most important energy

market. Our two main results are the non-trivial behavior of the mutual information with

the level of correlation between maturities and the sharp segmentation of the emitted

information that appears after the maturity 21 months.

In the future, we will deeper explore these results and extend our study to all the deriva-

tives that belong to our database. We hope to enhance the notion of segmentation in

derivatives markets with the concept of information transfer. Furthermore, we are close

to provide results on derivatives networks with directed links. We will then be able to

compare the topology as well as the statistical properties between undirected and directed

networks,for minimum spanning trees as well as for full connected graphs).
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This chapter is devoted to a theoretical work focusing on the way we could build a

minimal model. We first remind of the spirit of a minimal model and finally attempt to

describe the behavior of linked commodity derivatives, on the basis of physical tools.
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9.1 The spirit if a minimal model

Following a common strategy for physicists, we aim to build a model of commodity prices

behavior which gives a simplified representation of their real dynamic. Such a construction

relies on a balance between:

• the formulation of equations which are simple enough to be solved, either analyti-

cally or at least numerically

• remaining faithful to all the main features of the phenomena we want to study

Of course these two points are the core of any modeling process. As far as we know,

our investigations however are pretty original, and physicists who attempt ti build a new

model in a new field of investigation tend to make very rough simplifications. Most of

the time they propose models with a very small number of parameters. The key of this

modeling is to retrieve most of the information through the reduced number of parameters

and keeping in mind that some details are lost and not in the scope of the build minimal

model. We must emphasize that knowing what kind of information is lost make richer

the understanding of the model and is helpful for further investigations and refinements.

9.2 A minimal model for collective behavior and sta-

tistical physics toolbox

In the preceding sections , we briefly introduced certain words which sound familiar for

physicists. These words are probably less obvious for scientists belonging to other com-

munities. More precisely, we talked about phase transition, order parameter, collective

behavior, universality, noise or temperature... All this terminology can be explained with

rather simple concepts or pictures. This is the aim of this section. We will explain these

words, either formally or, when possible, with simple illustrations. In the next paragraph,
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(a) (b)

Figure 9.1: Sketch of three trajectories in a swarming crowd (figure (a)) in a moving
crowd (figure (b)).

all these concepts will be joined in a well defined context, namely a simple model exhibit-

ing collective behavior and phase transition.

Let us start this pedagogical section by introducing what a physicists means with the

expression collective behavior and what kind of tools or measures exist to detect them.

We define a collective behavior as a spontaneous consensus reached by all (or a signifiant

part) of an assembly of homogeneous or heterogeneous individuals. For instance, one

can imagine a crowd made up of individuals (having different ages, sex, social classes or

political opinions) walking around with no specific direction, which suddenly moves in

one direction. How can this kind of movement emerge in the absence of a leader and/or

an external stimulus? Such a collective motion is all the more surprising if individuals

inside the crowd only have access to local information. This a good picture of a collective

motion for a physicist. There is a large number of individuals, the available information is

local and a global movement is spontaneous. Naturally, a global motion resulting from an

external signal is also of interest but the questions addressed will be different. Then we
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need a value to discriminate if the crowd is moving or not. This is the role of the so-called

order parameter. The latter is a value that gives an information about the macroscopic

state of the system. For instance if the crowd is moving, the order parameter is equal to

one. Otherwise it is equal to zero. All the value between one and zero indicate the degree

of order in the crowd. Let us consider the velocity ~ui (t) of the individual (labelled by i)

at the time t. To make it more simple we take the modulus |ui (t)| = 1. The value of the

order parameter ϕ is defined by:

ϕ (t) = 〈ui (t)〉i , (9.1)

where <>i denotes the average over all the population. ϕ belongs to the interval [0, 1].

It takes the value 0 if the crowd does not move. conversely, if the assembly is moving in

the same direction, it is equal to 1.

Now we have introduced some concepts of phase transitions, we can collect them within a

simple model. The so-called Ising model, which describes the spontaneous magnetization

in magnetic material.

9.2.1 Ising Model

In this paragraph, we will present with all possible details a simple model describing how

a spontaneous magnetic field can appear in a material. A magnetic field results from a

collective behavior of microscopic entities. Questions about magnetization is out of the

scope of this report but the Ising model presents a great advantage: it provides a good

explanation of what is a collective behavior. Moreover, it gives some tool that proved to

be useful in the analysis of phase transition.

The ferromagnetism is a very complex phenomenon. Some materials, such as iron, cobalt,

nickel, for instance, are naturally magnetized. The existence of magnetization signifies

that, at a microscopic scale each electron carries a physical quantity, the spin. The latter
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is more or less the same for all the electrons and create a macroscopic magnetization. At

a high temperature, the spin of each electron is different. The magnetization vanishes

and the material is said to be paramagnetic. Again, the transition from a ferromagnetic

state to a paramagnetic state is a very complex phenomenon and we will see how we can

face such a complexity. We first need simple enough equations to be solved analytically

or at least numerically. Secondly, we have to conserve the main features we aim to study.

While the equations must remain very simple, the phase transition must appear in the

development of the model. We will not think any more about a specific material, nor

about electrons. We will replace it with a network of N nodes. The latter is characterized

by the presence of a spin ~Si at each node i. Then we consider the interactions between

spins. Only spins that are neighbors on the network can interact together. The latter lust

be aligned to create magnetization, the simplest interaction describing the alignment is

given by the hamitltonian H:

H = −J
∑

〈i,j〉

~Si
~Sj, (9.2)

where J > 0 is a coupling constant,
∑

〈i,j〉 is the sum over the nearest neighbors and the

modulus
∣∣∣~Si

∣∣∣ is set to one 1.

Despite the simplicity of the Ising model, the latter is still too much complicated and

cannot be solved. There is a need for an additional approximation in order to obtain a

analytical solution. Thus all the vectors ~Si are replaced by a number Si, which can take

two values: 1 and −1.

Equation (9.2) thus becomes:

H = −J
∑

〈i,j〉
SiSj, Si = ±±1 (9.3)
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and the partition function Z is :

Z =
∑

[Si]

e
J
kT

∑
〈i,j〉 SiSj , (9.4)

where the sum is over all the possible configurations:

∑

[Si]

=
∑

S1=±1

∑

S2=±1

∑

SN=±1

. (9.5)

Let us consider a possible configuration state α of the system. One can prove that the

probability of having the state α is :

Pα =
1

Z e
1
kT

Eα, (9.6)

where k is the Boltzmann factor, T the temperature of the system and Eα the energy of

the state α. The partition function is a normalization constant which ensures the sum of

probabilities to be equal to one. The partition function contains also how the probabilities

are distributed between all the configurations.

In a one dimensional space, the N spins are on a line, the partition is Z = 2N
(
cosh (K)N−1

)
.

The partition function covers the statistical properties of the system and allows for check-

ing wether a phase transition can occur. Here the transition corresponds to a transition

from a zero magnetization state to a non-zero magnetization state.

Once Z has been calculated, we have access to the two point correlation function 〈SiSj〉.
The correlation function gives the possibility to appreciate the influence of the value of

one spin Si on the other spins Sj. The influence of Si on Sj depends on the distance rij

between i and j. The value 〈SiSj〉 is high when rij is small and decreases as rij increases.

The correlation function is given by:

〈SiSj〉 = e−rij/ξ, (9.7)
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where ξ = a/ |ln (tanh J/kT )| is the correlation length, that gives the typical distance

above which the information is lost.

In this paragraph, we have presented the Ising model, a minimal model describing mag-

netization in ferromagnetic material. More precisely, we have seen how to model the

interaction between spins. We have also extracted the partition function, that gives ac-

cess to all the available information. For instance, the correlation function which gives

the scale at which a spin influences its neighbors. One can easily notice that a large value

of ξ implies large correlations and thus is the signal of a collective behavior.

We have exposed the model in a one dimensional space. However, for practical reasons

there is a need for higher dimensions. Unfortunately, despite all the simplifications made

to obtain the Ising model, the latter remains not trivial. Ernst Ising solved the prob-

lem in 1925. It was not until 1936 that Rudolf Peierls proved that the two-dimensional

Ising model has a phase transition. The critical temperature for the phase transition has

been obtained by Kramers and Wannier in 1941 and finally a general solution for the

two-dimensional case has been found by Onsager in 1944. Eighty years later, no one has

found an analytical solution in three dimensions. To deal with a high dimensional system,

or a more complicated model, additional approximations are necessary. A very important

and useful method is the so called mean field approximation.

9.2.2 Mean field approximation

Weiss proposed the mean field method in 1907. The latter consists in replacing the

influence of the neighbors by their average impact. Let us consider one spin Si. If we

want to calculate its energy, it is possible to approximate the effect of the other spins

Sj by introducing their average 〈Sj〉. The problem becomes a classical paramagnetism
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calculation and the interaction is given by:

H = −J
∑

〈i,j〉
SiSj − µB

∑

i

Si, (9.8)

where B is an external magnetic field and µ the magnetic moment.

The energy for one spin Si is:

Ei = −JSi

∑

j

〈Sj〉 − µBSi. (9.9)

In equations (9.8) and (9.9), there a supplementary term µB
∑

i Si that reflects an exoge-

nous effect and could be later set at 0 later. The mean field approximation is obvious in

(9.9) where the sum over the neighbors has been transformed into a sum over the average

value 〈Sj〉. Within the mean field approximation, the magnetization M is:

tanh−1M =
qJ

kT
M +

µB

kT
, (9.10)

where q is the number of neighbors, which depends of the dimension oh the space. When B

tends towards zero, the mean field approximation predicts a spontaneous magnetization:

• M = 0 if T > qJ/k

• M 6= 0 if T < qJ/k

As the parameter T is tuned, the magnetization M changes from zero to a non-zero value.

Thus T is thus called the control parameter because a variation in T changes the macro-

scopic property of the system. The value M , which indicates if there is magnetization, is

the order parameter.

The mean field approach predicts a spontaneous magnetization as soon as the temper-

ature T is below qJ/k. This magnetization is the sign of a collective behavior. Indeed,

at a microscopic scale, due to the local interactions described by (9.3), the spins take
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collectively the same value and create a macroscopic magnetization. There is a special

value of T . This value is named the critical temperature, Tc, and is equal to qJ/k. The

mean field theory provides important results for a temperature T close to Tc.

In particular, the magnetization M behaves as:

M ∼ (Tc − T )
1
2 . (9.11)

The magnetization response of a material to an exogenous magnetic field is called the

susceptibility and is defined as:

χ =
∂M

∂B

∣∣∣∣
B=0

. (9.12)

On both sides of Tc, the susceptibility χ behaves like:

χ ∼ (Tc − T )−1 , (9.13)

with a different coefficient according to the sign of (Tc − T ). The behavior of the magne-

tization M in function the external applied magnetic field B is:

B ∼ M3. (9.14)

The equations (9.11), (9.13), (9.14), give the behavior of some physical quantities close

to the critical temperature Tc. These behaviors are described power laws. A power law

function f(x) = xα is invariant under the rescaling x → λx because:

f(x) = λ−αf(λx). (9.15)

Thus, the observed phenomena close to the critical temperature Tc are scale invariant and

remain identical whatever the size at which the system is observed. The exponents of the

power law functions do not depend on details, it is the reason why details are removed to
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reach a minimal model, and are named universal exponents.

9.3 Some conclusions and general ideas about the Ising

model and the mean field approximation

As a conclusion, let us briefly summarize the two preceding paragraphs in order to insist,

first on the philosophy underlying the construction of a minimal model, second on the

advantages and drawbacks of such a model.

A minimal model focuses on some main characteristic(s) and do not pay intention to

the details. For instance, the Ising model predicts that a transition will occur at a given

temperature Tc. However Tc is not universal while the transition is. We cannot know which

spin is in charge when the magnetization appears, but the behaviors of the correlation

length or some physical quantities described by power laws are the same for all materials.

Despite the simplicity of minimal models, most of the time they have analytical solutions

and one need numerical investigations or approximations like the mean field theory. It

is a very useful method, still used and in general is a first step to study a new model,

but must be considered carefully. The reason is that fluctuations are neglected and if the

phenomenology is driven by fluctuations the mean field approach will not capture it.

9.4 ⋆Reminding of systemic risk modeling and how to

resort to physical systems to build a model

9.4.1 ⋆Systemic risk

Systemic risk, if it exists, can lead to a disequilibrium of part or even the whole of

the integrated financial markets. From a financial point of view, the problem can be

formulated in the following way: how can contagious phenomena between markets develop
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out relations between local prices? From a physical point of view, the question can be

posed in the following terms: How can a global collective behaviour emerge out of local

interactions?

Over recent years, certain concepts drawn from physics, such as collective behaviour, scale

invariance and renormalisation, have been successfully used in the fields of economics

and finance, and have given birth to a new discipline called econophysics. To be more

precise, some physicists have developed minimal agent-based models for understanding

and characterising the properties of the emergence of collective behaviour (see for example

([17]). These models are relevant since they can capture, in the same framework, the main

characteristics of movements of bacteria, herds of wild cattle, schools of fish or crowds.

We do not mean that bacteria movements and prices movements are the same, indeed

they are not. But we believe that there are common mechanisms that may explain the

onset of collective motions in biological, physical as well as in economic systems. Prima

facie, there is a hard conceptual step, but no technical difficulties. Hence, agent-based

models, inspired from statistical physics, have been widely used and demonstrated that

this type of analysis can be used to study the behaviour of financial operators.

The most important issue of our theoretical work is to allow for the elaboration of a

model representing the links connecting the derivatives markets, which will be able to

faithfully depict the empirical statements of greater significance. The usefulness of such

a model will be to highlight the mechanisms that are responsible for markets integration

and their implication in prices movements. Moreover, such a model will allow for the

study of diverse shock scenarii for the prices path propagation and for the intensity of

this transmission.

A major key of econophysics is to find the most relevant analogies between economic

and physical systems. Our main theoretical idea is to use a set of coupled equations

to model the dynamic of the term structure as well as the three dimensional system.

More formally, we aim to resort to coupled mesoscopic equations of dynamic macroscopic

141



Chapter 9. Building a minimal model

variables evolving slowly in time. We can motivate our choice under several analogies

between the time evolution of price and a brownian particle in a harmonic potential.

Prices are variables evolving randomly in time, submitted to mean reverting and forces. It

is obvious that such a simple approach would not be able to reproduce a realistic dynamic,

since it is well known that prices diverge from a pure brownian motion. Nevertheless, our

empirical results can give enough information to introduce coupling terms between the

equations to make the dynamic richer. We can build global forces depending on the state

of the whole system, such as a mean field action, and local forces depending of the states of

the most correlated markets, that is to say forces between edges in the minimal spanning

tree. The inner properties could also be modified according to the past prices properties,

for instance the equilibrium can be changed according to the historical mean price and

volatility. More than analogies, our approach is also motivated by former work. There

are several examples in the literature of mesoscopic markets description. For instance,

in [42], the authors use an agorithmic method to estimate from financial time series the

linear approximation of the drift parameter. In [32], the authors models with a mesoscopic

description the probability of price increments and reproduces the non-gaussian behavior

of the tails of the distribution. Lastly, in [6], the authors propose a non-linear equation

of stock market fluctuations and crashes:

du

dt
= −αu− βu2 − γu3 − κ (x− x0) + ξ (t) , (9.16)

where u is the price velocity, ξ a random term and V a time dependant potential: κ is

the mean reverting term, α is the competition between the destabilizing trends and the

stabilizing market clearing mechanisms, β is the risk aversion effects and γ a term that

plays a stabilizing role in some circumstances. Then 9.16 can be rewritten:

V (u) = κ (x− x0)u+ α
u2

2
+ β

u3

3
+ γ

u4

4
+ ... (9.17)
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where V is a time dependent potential.

We could propose a set of modifications in order to extend the above equations to the

maturity dimension and the three dimensional system. For instance a coupling term can

be introduced through an external force weighted by cross-correlation coefficients. In

addition to this coupling term, we could also introduce directionality in order to break

the symmetry of the cross-correlation coefficients. Indeed we can expect asymetric forces

along the term structure (the impact is probably not the same from the first to the

last maturity and from the last to the first). Furthermore, commodities are submitted

to industrial proccesses that induce directionality in prices movements. Such additional

terms would have to be considered carefully since they would lead to unphysical forces in

the equations.
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⋆Conclusion

In this report we present our first results about the study of systemic risk in energy

derivatives markets. In the financial literature, the studies of the way shocks appear in

financial markets and the way they disseminate generally take into account one or two

of the dimensions of the integration. Because the integration can be examined accord-

ing to three dimensions, namely space, observation time and maturity, we have naturally

been lead to the following question: “Why not trying to study the three dimensions si-

multaneously?”. On that purpose, we apply recent methods issued from statistical physics.

We first present the energy markets selected for our empirical study: two crude oil,

two petroleum products, two natural gas markets. We then expose the main character-

istics of the whole database, which also includes six agricultural markets and four other

financial assets (interest rates, exchange rates and stocks). Finally, we illustrate some

futures prices behavior on our study period and we discuss the seasonal behavior of the

commodities under consideration.

We then present a set of empirical properties emerging from the statistical analysis of

prices changes. In the literature on that subject, it appears that these properties hold ir-
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respective of the particular asset under consideration. So they are considered as universal,

in the meaning of physicists. After an overview of such universal properties and we char-

acterize the statistical properties of the derivatives we study, in the maturity dimension.

More precisely, we examine and compare the behavior of the term structure of futures

prices’ returns of commodity and financial derivatives. Analyzing the statistical properties

of daily prices over a ten-year period leads to a first important conclusion: financial un-

derlying assets and commodities have their own statistical signature. Whereas the mean

absolute return and the variance are characterized by a bell curve for interest rates, with

a maximum located at a maturity indicating a limit of the monetary policy influence,

the commodities can be distinguished by a decreasing pattern with the maturity. This

phenomenon is usually referred to as the Samuelson effect. The fluctuations of the returns

characterize it with an exponent ∼ 0.3, which may be universal for commodities. To the

best of our knowledge, it is the first time that such a conclusion is reached. Moreover,

the analysis of the skewness and kurtosis shows that derivative markets tend to exhibit

an asymmetrical distribution skewed to the left (right) when they are in contango (back-

wardation). A second important conclusion comes from the study of rare events. We first

observe that in their majority, the distribution of the returns along the term structure do

not belong to the Lévy stable domain. That is to say, the tail of the distribution decreases

with an exponent greater than 2. More importantly, we then find evidence of the existence

of two regimes of risks in the maturity dimension: the value of the average tail exponent

defines a phase diagram with two phases separated at the maturity of transition Mt = 18

months, reflecting a segmentation in the maturity dimension and a fatter tail above Mt.

We then study the question of systemic risk in energy derivative markets on the basis

of two choices. First we focus on market integration, as it can be seen as a necessary

condition for the propagation of a prices shock. More specifically, we focus on the simul-

taneous correlations of price returns. Secondly, based on the fact that previous studies
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mainly focused solely on the spatio-temporal dimension of integration, we introduce a

maturity dimension analysis and we perform a three-dimensional analysis.

The method allowing us to empirically measure the integration of the markets is a fil-

tering procedure which transforms a correlation matrix into a distance matrix in order

to compute a particular graph, the minimum spanning tree (MST). The latter provides

the shortest path linking together all the nodes of the graph. The visualization of the

MST first shows a star-like organization of the trees in the spatial dimension, whereas

the maturity dimension is characterized by chain-like trees. The star-like organization

reproduces the three different sectors studied: energy, agriculture and finance, and the

chain-like structure reflects the presence of a Samuelson effect. These intuitive results are

very important, as they are a key justification for the use of our methodology. As far as

the three-dimensional analysis is concerned, the star-like organization still dominates.

A more precise analysis of the spatial integration for five markets on different maturities,

shows that the topology of the graphs changes with the maturity under consideration. In

each case, the links between markets, through the representation of the minimum span-

ning tree, have an economical interpretation that satisfies the intuition. The comparison

between the results obtained on different maturities shows that the strength of integration

increases with the maturity. This result is original and has not been mentioned in other

works until now.

The American and European crude oils are both found at the center of the graph and

ensure the links with agricultural products and financial assets. Thus the first conclusion

of importance that we come to is that crude oil is the best candidate for the transmission

of prices shocks. If such a shock appears at the periphery of the graph, unless it is ab-

sorbed quickly, it will necessarily pass through crude oil before spreading to other energy

products and sectors. Moreover, a shock will have an impact on the whole system that

will be all the greater the closer it is to the heart of the system.

Another important conclusion is that the level of integration is more important in the
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maturity dimension than in the spatial one. Once again, this result is intuitive: arbitrage

operations are far easier with standardized futures contracts written on the same under-

lying asset than with products of different natures such as corn bushels and interest rates.

The analysis of how this level evolves over time shows that integration increases signifi-

cantly on both the spatial and maturity dimensions. Such an increase can be observed on

the whole prices system. It is even more evident in the energy sector (with the exception

of the American and European natural gas markets) as well as in the agricultural sector.

The latter is highly integrated at the end of our period. Lastly, as far as the financial

sector is concerned, no remarkable trend can be highlighted. Thus, as time goes on, the

heart of the price system becomes stronger whereas where the peripheral assets are found

does not change significantly.

Last but not least, the dynamic analysis also reveals, by using survival ratios, that the

system is fairly stable. This is true, except for specific events leading to important recon-

figurations of the trees and requiring a specific analysis. We leave these studies for future

analyses.

Such results have very important consequences, for regulatory as well as for hedging and

diversification purposes. The move towards integration started some time ago and there

is probably no way to stop or refrain it. However, knowledge of its characteristics is

important, as regulation authorities may act in order to prevent prices shocks from occur-

ring, especially in places where their impact may be important. As far as diversification

is concerned, portfolio managers should probably focus on the less stable parts of the

graph. The links in the trees which change the most should be the best candidates for

diversification opportunities. Lastly, one important concern for hedging is the informa-

tion conveyed by futures prices and its meaning. The increasing integration of derivative

markets is probably not a problem for hedging purposes, unless a prices shock appears

somewhere in the system. In such a case, the information related to the transmission path

of the shock is important, as prices might temporarily become irrelevant.
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Once an appropriate methodology for understanding systemic risk, graph theory, has

been identified, there was a need to examine the causality relationships among derivative

markets, in order to study the direction in which price fluctuations are propagated. We

propose two methods to study causality and information transfer in derivative markets.

The first analysis investigates the interplay between carbon markets and the main energy

markets, that is to say crude oil markets, natural gas, coal and electricity. We find evi-

dence of strong and immediate causality running from crude oil to carbon spot returns.

Moreover, the two crude markets drive, in the Granger sense, natural gas, coal as well as

electricity. In return, coal and natural gas markets both affect carbon markets.

The second analysis is based on probabilistic measurements and aims at determining how

the flow of information moves between derivatives. We have restricted our study to the

Light Sweet crude oil in the maturity dimension. We provide preliminary results on mu-

tual information and emission/reception of information between maturities. We find that

that the maturities sharing the maximum of information are located in the intermedi-

ate part of the term structure. Furthermore, we also observe a sharp segmentation of

the driving information along the term structure. The maturities above 21 months are

receivers of information while the maturities below are emitters. This strong transition

between reception and emission remind us of those observed in the tail exponent term

structure. It may be possible that the two regimes of shocks may be linked to the two

regimes of information.

Once this study will be achieved, we will have an overview as well as a precise under-

standing of the landscape of forces acting between derivatives and their maturities. Thus

the main part of our further studies will be devoted to modeling the collective behavior

of derivatives energy markets and systemic risk. We will use theoretical concepts inspired

by statistical physics, especially the use of minimum model. Our former results will lead
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us to establish fundamental hypothesis and play the role of guideline in the development

of the model. In particular we want to determine in a single framework the mechanisms

of price’s term structure (which lead to linear tree), as the interactions between markets

(which lead to star-like tree). Once the two typical shapes will be achieved, we will be

able to use the model in order to understand the complex process of branching that ap-

peared while the three dimensions of integration, namely where in their price’s curves two

different derivatives markets are most correlated. A major contribution of this part of the

modeling will be to understand how (and where) links appear between markets. Secondly,

we will proceed to a shock analysis and consider such questions as the existence of tree’s

shape that help or prevent to strong shocks, the required number of markets involved in

an event to propagate it, or the amplitude of shocks that can involved in systemic risk.
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