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Preface

Starting with the seminal article by Kydland and Prescott [6], the issue of the time needed to build

capacity of production before being able to produce has been studied in the economic literature.

This work is a new attempt to tackle this important question linked to the evolution of supply

and we provide new mathematical tools1 to model competition between economic agents facing

time-to-build issues. These methods allow to study in a very general framework, the dynamics of

the entire production capacity, be it productive now or expected in the future. More precisely, our

modeling framework permits us to take account of both the rate of progress in the construction

of new production capacity units and the ageing of currently available production structures. In

other words, the state variable of our problem is the number of units in each possible state, be

they under construction, production or obsolete.

In our framework, decisions are taken by rational individual entrepreneurs in charge of their own

production structure. The global production structure is therefore the outcome of a large num-

ber of decisions, taken by individual atomized agents that are too small to be individually able

to influence the global dynamics. In spite of this absence of influence, strategies and decisions

are complex. The time-to-build issue and the (rational) expectations indeed generate complex

reactions in response to demand fluctuations and global production capacity evolution (the global

stock of production units under construction having a lot of influence on agents’ decision process).

The time-to-build issue hence generates behaviors that are not only based on observed prices. The

expectation on future prices can only be made through the knowledge of the entire production

structure.

The important result we provide – which is not limited to the economic problem under scrutiny

– is that, for a large class of situations, the resulting dynamics of the entire production structure,

although agents optimize selfishly without any cooperation, is identical to the dynamics a benev-

olent planner would end up with for a certain global optimization criterion. This optimization

criterion is more than the average of individuals’ objective function and takes into account the

interactions between the underlying entrepreneurs.

This mathematical result is new and its general proof is out of the scope of this text although we

provide specific proofs when needed. However, this result will certainly be the subject of a paper

in an economic journal.

This text focuses on the presentation of our new modeling methodology and on its applica-

tions. To better understand the framework, we start with simplified models. For instance, we

1These methods are rooted to the mean field game theory introduced in 2006 by J.-M. Lasry and P.-L. Lions.
Mean field game theory allows to find equilibria of games with a lot of players and is now widely studied both to
extend the theoretical results and to use it in applications.
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focus first on the decision process of production capacity construction in several deterministic

contexts where a demand shock is expected to happen and perfectly anticipated. These simpli-

fied models are in fact necessary steps toward the presentation of the general model with time

to build and randomness both at the agent level and on total demand. Then, once the general

framework has been presented along with the equivalence with a planning problem, we focus on

the numerical tools to solve the partial differential equations arising when modeling the decision

process of new capacity construction.

The models we develop describe some aspects of industries such as the oil industry. In addition

to the outcomes of these models, we think that the reader will catch the main innovations and

the power of our new approach. This text should pave the way for future applications, especially

as far as the supply of raw materials is concerned.
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Introduction

A substantial part of macroeconomic fluctuations is linked to the behavior of commodity prices

such as oil prices (see for instance [5], [13]). In particular, it is widely known that important

recessions are correlated with turmoil on oil prices.

The high volatility of oil prices is therefore a matter of important preoccupation and has been

studied with different perspectives. The most common perspective is the financial one. A large

economic and financial literature is indeed devoted to the study of oil prices and to the time

structure of these prices in future markets. Aside from this literature, but somehow linked to it,

economists have tried to explain the determinants of such a high volatility and some common

features of oil prices have also been studied such as the important skewness of price distribution,

inducing short periods with very high prices. In particular, non-linear models have been devel-

oped (see for instance [2], [3], [14]) that incorporate the important issue of reserves or storage in

the dynamics of oil prices.

In this text we consider the time-to-build dimension of the oil industry and we model oil com-

panies’ decision making in the development and the exploitation of new production capacities.

Similar to the hypotheses on investment in the time-to-build literature (see [6], [10]), we develop

models in which capacity can only evolve progressively. This aspect of industrial processes is

often neglected in the economic modeling of most industries but it is an important determinant

as far as the oil industry is concerned. Oil companies indeed decide on exploration and then on

production with respect to the economic environment and the delay between a decision and the

actual subsequent increase in production capacity may be very long. Hence, decision making not

only has to take account of current and anticipated dynamics for oil demand but also depends on

the increase in production capacities planned by competitors.

The models we develop are devoted to a description (with microeconomic foundations) of the

progressive adaptation of suppliers’ production capacity to shocks on demand. Thus, since slow

capacity evolution implies absorption of demand shocks through prices and then through change

in production capacity, the models also allow us to study the price reaction function that trans-

forms exogenous shocks on demand into price fluctuations. This modeling is a new attempt to

provide determinants to oil prices volatility and we see that, contrary to what happens in other

industries, exogenous demand shocks are hardly attenuated. Low price elasticity of oil demand

due to the lack of a good substitute, important delay in capacity adaptation and volatility of

demand (and supply2) are indeed the three ingredients for high volatility in prices.

2although this is not modeled per se in this text.
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The very nature of the problem we model, that is the backward dimension of optimal control

based on anticipations, coupled with the forward nature of the industrial process, imposes the use

of the tools developed in the mean field game theory [7, 8, 9].

Part I is devoted to a simple model of oil production with slow (endogenous) capacity evolution.

This model developed in a deterministic framework is well summed up by a forward/backward

dynamical system. When it comes to adapting this model to a new framework in which demand is

stochastic, then, the fact that noise was common to all producers made it necessary to develop a

new framework to deal with common noise and thus, with Hamilton-Jacobi-Bellman equations in

infinite dimension spaces. This new framework for mean field games, developed in 2010 and 2011

by J.-M. Lasry and P.-L. Lions has been used here in the case of a finite state space that reduces

the HJB equation in infinite dimension to a system of coupled HJB equations. This new method

is exemplified at the end of Part I and Part II is devoted to the derivation of important results in

this new framework. In particular, it is shown in Part II that, for a certain class of games called

potential games, a solution to the problem can be found by solving only one HJB equation. Part

III presents an application of this new framework to the modeling of the time-to-build dimension

of oil industry: before a capacity production is available, it has to go through a given number of

steps and the transition from one step to the next can be partially controlled by the oil producers.
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Part I

Production capacity choices

In this first part we will present a model of production capacity choices applied to oil industry.

The goal of this first part is twofold. First we aim at understanding the implications of production

capacity choice in terms of oil prices. The problem exhibits indeed a complex forward/backward

structure since production capacity choices depend on expectations and will in turn govern the

dynamics of oil supply for some time. Our first goal is then to model the impact of imperfect

adjustment of supply to demand fluctuations, especially in terms of prices. Second, we will use

this model to present a new approach allowing us to solve a certain class of mean field games.

This new approach will then be developed theoretically and applied to a model dealing with

“time-to-build” issues in oil industry.

1 Setup of the model

We regard oil industry as an industry with infinitely many participants. Each participant in

the oil industry has a certain production capacity, these production capacities being chosen on

entering the market. Hence we denote qi the production capacity of agent i and the total quantity

available for production (equal to supply in our model) m.

To model oil prices we introduce a time-varying demand function D(t, p) and the associated

inverse demand function P (t, ·).
An agent with production capacity q makes a profit between t and t+ dt that is therefore:

π(t, q) = qP (t,m(t))

Each participant produces oil for a certain period of time τ that is random and modeled by an

underlying Poisson process of intensity λ.

Hence, an agent entering the market at date t with production capacity q has an expected profit

of the form:

Π(t, q) = E
[∫ t+τ

t

qP (s,m(s))e−r(s−t)ds

]
= q

∫ ∞

t

P (s,m(s))e−(r+λ)(s−t)ds

7



where r is the interest rate used to discount profits.

For further analysis we denote u(t) the profit associated to a unitary production capacity i.e.

u(t) =

∫ ∞

t

P (s,m(s))e−(r+λ)(s−t)ds

Now, at each period of time a new participant enters the market and must choose its production

capacity q. It is rather natural to think that this production capacity will be an increasing function

of u and we assume that an agent entering the market at date t chooses q = ku(t) where k is a

constant.

Another way to introduce this is to say that a producer willing to have a production capacity

equal to q incurs a cost equal to q2

2k
.

2 A forward-backward dynamical system

To solve this model, we need to deal with the interaction between supply and profit: if profit is

expected to increase, then more production capacities will be built. In turn, if m increases, the

price will drop, inducing a decrease in expected profit. The system is then characterized by two

equations.

Starting with the dynamics of supply, m satisfies the following ordinary differential equation:

m′(t) = ku(t)− λm(t)

the initial condition being m(0) = m0 a given constant.

Then, we can differentiate the equation that defines u and we get:

u′(t) = (r + λ)u(t)− P (t,m(t))

To guarantee that the solution of the preceding equation is well defined and indeed equals the

intertemporal expected profit u, we impose the following transversality condition:

lim
t→+∞

e−(r+λ)tu(t) = 0

Hence, we have to solve the following dynamical system:
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u′(t) = (r + λ)u(t)− P (t,m(t)) lim
t→+∞

e−(r+λ)tu(t) = 0

m′(t) = ku(t)− λm(t) m(0) = m0

The first equation is backward since it characterizes a value function obtained by backward

induction. The second equation states the evolution of the system and is therefore forward.

For this reason, the above system is thereafter referred to as (FBDS) – for forward/backward

dynamical system.

3 A benchmark case

As a reference case, we will consider an inverse demand function that does not depend on time:

P (t,m) = P (m) – this function being continuous and decreasing in m.

3.1 Solution trajectory

We start with the stationary equilibrium which is easily found.

Proposition 1. There exists a unique stationary equilibrium point (u∗,m∗) to (FBDS).

m∗ is the unique solution of P (m∗) = 1
k
λ(r + λ)m∗ and u∗ = λ

k
.

Now, although it is a forward-backward dynamical system we can draw a phase diagram

(Figure 1) and we see that (FBDS) is an hyperbolic dynamical system with a saddle point. Hence

for a given starting point m0, we need to know the value of u0 to know whether or not we are on

the stable manifold.

In fact because of the very definition of u (or equivalently because of the transversality condition),

we know that if t ∈ [t̂,+∞[7→ m(t) were increasing for some t̂ then t ∈ [t̂,+∞[7→ u(t) must be a

decreasing function. Indeed, ∀t2 > t1 > t̂:

u(t2) =

∫ ∞

t2

P (m(s))e−(r+λ)(s−t2)ds

≤
∫ ∞

t2

P (m(s+ t1 − t2))e
−(r+λ)(s−t2)ds

≤
∫ ∞

t1

P (m(s))e−(r+λ)(s−t1)ds

≤ u(t1)
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Figure 1: Phase diagram of (FBDS). Parameters are: k = 0.2, λ = 0.2, r = 0.05 and P (m) = m− 1
2 .

Hence, the trajectory cannot go in the east quadrant of the above phase diagram since it would

stay in this quadrant and both u and m would be increasing after some time.

Since the same reasoning applies symmetrically for the west quadrant, the trajectory must lie

in the north or in the south quadrant. The only possibility is then that the trajectory lies on the

stable manifold of the dynamical system.

Proposition 2. The solution (u,m) of (FBDS) lies on the stable manifold of the dynamical

system and hence converges toward (u∗,m∗).

3.2 Numerical aspects

For the above benchmark as well as for the models to come, we will need to find numerically the

trajectory followed by (u,m). We propose two techniques to approximate the trajectory, the first

being based on the eductive strategy used to solved mean field games and the second being based

on the resolution of a nonlinear ordinary differential equation. Other methods may be constructed

like shooting methods.

3.2.1 The eductive strategy

Let us consider a finite horizon analog of the equations (FBDS). u and m are replaced by t 7→
u(t, T ) and t 7→ m(t, T ) where T is the horizon of the problem, chosen large enough in what
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follows to ensure a good approximation. Since we know the asymptotic value for u, a natural

choice to define a finite horizon approximation is:

u′(t, T ) = (r + λ)u(t, T )− P (t,m(t, T )) u(T, T ) = u∗

m′(t, T ) = ku(t, T )− λm(t, T ) m(0, T ) = m0

We know from the same analysis as above that there exists a unique solution to this system and

we easily see that:

lim
T→∞

sup
t∈[0,T ]

|u(t, T )− u(t)| = 0

and

lim
T→∞

sup
t∈[0,T ]

|m(t, T )−m(t)| = 0

Hence, a way to approximate the solution (u,m) is first to approximate u∗ and then to use a

method that approximates (u(t, T ),m(t, T )).

Now, if we integrate the above system we have:

u(t, T ) = u∗e−(r+λ)(T−t) +

∫ T

t

P (s,m(s, T ))e−(r+λ)(s−t)ds

and

m(t, T ) = m0 + k

∫ t

0

u(s, T )e−λsds

The eductive approach then consists in starting with u0(t, T ) = u∗ and m0(t, T ) = m0, ∀t ∈
[0, T ], and then computing recursively (un+1,mn+1) from (un,mn) by:

mn+1(t, T ) = (1− θ)mn(t, T ) + θ

[
m0 + k

∫ t

0

un(s, T )e−λsds

]
and

un+1(t, T ) = (1− θ)un(t, T ) + θ

[
u∗e−(r+λ)(T−t) +

∫ T

t

P (s,mn(s, T ))e−(r+λ)(s−t)ds

]
for some small parameter θ.

Now, depending on the specification for P and the values of the parameters, the sequence

(un,mn) may converge and in that case it converges towards (u(·, T ),m(·, T )) that is a rather

good approximation of (u,m) when T is sufficiently large.
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Two instances of such a resolution are carried out below.

First, we consider a case where m0 < m∗ (Figure 2) and we see that, as expected, the value of u(0)

is such that (u(0),m0) lies on the stable manifold. This value u(0) is endogenously determined

by the algorithm and corresponds to the expected intertemporal profit of an agent at time 0.
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Figure 2: Solution of (FBDS) for m0 = 0.2. Parameters are: k = 0.2, λ = 0.2, r = 0.05 and

P (m) = m− 1
2 .

Second, we consider a case where m0 > m∗ (Figure 3) and the trajectory lies on the stable

manifold as above.
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Figure 3: Solution of (FBDS) for m0 = 6. Parameters are: k = 0.2, λ = 0.2, r = 0.05 and

P (m) = m− 1
2 .
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3.2.2 A nonlinear second order equation

Another way to find the trajectory is to transform (FBDS) in a second order (nonlinear) ordinary

differential equation. Rewriting the system

u′(t) = (r + λ)u(t)− P (m(t))

m′(t) = ku(t)− λm(t)

we see that

u′(t) = (r + λ)u(t)− P (m(t))

u′(t) =
1

k
(r + λ)(m′(t) + λm(t))− P (m(t))

Hence,

m′′(t) = ku′(t)− λm′(t)

m′′(t) = (r + λ)(m′(t) + λm(t))− kP (m(t))− λm′(t)

Hence, the second order equation for m is:

−m′′(t) + rm′(t) + (r + λ)λm(t)− kP (m(t))

The initial condition that derived from (FBDS) is m(0) = m0 and the transversality condition

is limt→+∞ e−(r+λ)t(m′(t) + λm(t)) = 0

This transversality condition is not practical and since we know that limt→∞ m(t) = m∗, we

may replace the transversality by this condition, especially in approximations.

As before, we can consider for T sufficiently large the unique solution m(·, T ) of3

⇒ −m′′(t, T )+rm′(t, T )+(r+λ)λm(t, T )−kP (m(t, T )) = 0, m(0, T ) = m0, m(T, T ) = m∗

3the notation m(·, T ) is the same but this function is different from the one introduced in the above paragraphs.
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Hence, the second method consists in solving a nonlinear4 second order differential equation

with Dirichlet limit conditions in 0 and T . We will see in what follows that this method is well

suited for generalizations of the model.

4 The impact of a demand shock

Now, we do not suppose anymore that the inverse demand function is independent of time and

rather study the impact of a shock on demand. Our interest will be both on permanent and

temporary shocks. The goal is to understand the decisions made by the agents in terms of

production capacity building with respect to their (perfect) anticipations of future demand and

to study the impact of their individual decisions on price dynamics.

4.1 Permanent shocks

4.1.1 Framework

Let us start with the case of a permanent shock on demand. This shock is modeled through a

change in the inverse demand function and we suppose that, at equilibrium between supply and

demand, (t,m) 7→ P (t,m) is of the form p(c(t),m) with

p(c,m) = cm−η, 0 < η < 1

where

c(t) =


c1, if t ≤ t1

t2−t
t2−t1

c1 +
t−t1
t2−t1

c2, if t ∈]t1, t2[

c2 if t ≥ t2

Hence, the system to be solved is:

m′(t) = ku(t)− λm(t), m(0) = m0

u′(t) = (r + λ)u(t)− p(c(t),m(t)), lim
t→+∞

e−(r+λ)tu(t) = 0

Because c(t) = c2 after time t2 we know from the preceding section that the stationary point is

unique and that (u(t),m(t)) will converge toward this stationary point (u∗,m∗) given by Propo-

sition 1 for P (m) = c2m
−η. The only difficulty, due to the forward-backward structure is to

compute the trajectory toward equilibrium.

4unless the demand function is itself linear
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Figure 4: Form of the shock on c with c1 = 1, c2 = 1.5, t1 = 3 and t2 = 5.

In fact, since we can compute the limit (u∗,m∗) either numerically or analytically we can use

the same eductive strategy as above.

This eductive strategy consists here in starting with u0(t, T ) = u∗ and m0(t, T ) = m0, ∀t ∈
[0, T ] and then computing recursively (un+1,mn+1) from (un,mn) by:

mn+1(t, T ) = (1− θ)mn(t, T ) + θ

[
m0 + k

∫ t

0

un(s, T )e−λsds

]
and

un+1(t, T ) = (1− θ)un(t, T ) + θ

[
u∗e−(r+λ)(T−t) +

∫ T

t

p(c(s),mn(s, T ))e−(r+λ)(s−t)ds

]
for some small parameter θ and a large horizon of time T .

Another strategy may be used that relies on the second order elliptic equation introduced

above. Similar derivations indeed lead to approximate the trajectory followed by m by the unique

solution of the following equation:

−m′′(t, T )+rm′(t, T )+(r+λ)λm(t, T )−kp(c(t),m(t, T )) = 0, m(0, T ) = m0, m(T, T ) = m∗

15



4.1.2 Economic analysis and simulations

To better understand the effect of the shock, we carried out our computations with a starting

point m0 that equals the stationary value the system would attain in the absence of a shock. In

our case, if we consider η = 1
2
and the function c(t) as described on Figure 4 with c1 = 1 and

c2 = 1.5, this starting point m0 is the limit value of m(t) as t → +∞ for a demand function

P (m) = m− 1
2 as in the preceding section (see Figure 2 and Figure 3 for the value of this limit

value).

This hypothesis on m0 allows us to better understand the very nature of the shock. We can

indeed consider that before time t = 0 the system is at its stationary point corresponding to

c1 = 1 and that at time t = 0 a shock is announced to be expected at time t1 = 3 – the other

parameters being t2 = 5 and c2 = 1.5. Hence at time t = 0, the trajectory will jump from the

former stationary equilibrium point of Figure 2 and Figure 3 to a new point in the phase diagram

with the same value for m but a new (greater) value for u and then follows a continuous trajectory

(see Figure 5) toward the limit value (u∗,m∗).
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Figure 5: Trajectory in the phase diagram for a permanent shock with c as above, k = 0.2,
λ = 0.2, r = 0.05 and η = 0.5. m0 is chosen as the stationary value when P (m) = m− 1

2 .

We can also look at the trajectory followed by m as a function of time (Figure 6) and we see

that once the shock is announced at time 0 the participants in the market start to build produc-

tion capacity to be ready when the shock is happening. This anticipation induces a decrease in

price (Figure 7) before the shock occurs. However, even after t = t2, the equilibrium point is not
16



attained and the stock of production capacity still rises and induces a decrease in price toward

its asymptotic value.

 2.6
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 3.2

 3.4

 0  5  10  15  20  25  30

m*

m0

Figure 6: Trajectory of m for a permanent shock with c as above, k = 0.2, λ = 0.2, r = 0.05 and
η = 0.5. m0 is chosen as the stationary value when P (m) = m− 1

2 .
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Figure 7: Trajectory of the price for a permanent shock with c as above, k = 0.2, λ = 0.2, r = 0.05
and η = 0.5. m0 is chosen as the stationary value when P (m) = m− 1

2 .
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4.2 Transitory shocks

Let us turn now to the case of a transitory shock. As above, we chose to carry out our computations

with a starting point m0 that equals the stationary value the system would attain in the absence

of the shock.

4.2.1 Framework

The transitory shock on demand is modeled through a change in the inverse demand function

and we suppose that, at equilibrium between supply and demand, (t,m) 7→ P (t,m) is of the form

p(c(t),m) with

p(c,m) = cm−η, 0 < η < 1

where

c(t) =


c1, if t ≤ t1

c2 − c2−c1
t2−t1

|2t− (t1 + t2)|, if t ∈]t1, t2[

c1 if t ≥ t2

 0.8
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Figure 8: Form of the shock c with c1 = 1, c2 = 1.5, t1 = 3 and t2 = 5.

Because c(t) = c1 after time t2 we know that the stationary point is unique and that (u(t),m(t))

will converge toward this stationary point (u∗,m∗) which is given by Proposition 1 for P (m) =

c1m
−η. Hence, the same numerical methods as above can be used.
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4.2.2 Economic analysis and simulation

The interpretation of the shock and its consequences can be done using the following scenario.

Before time t = 0, the equilibrium is at its stationary point corresponding to c1 = 1. Then, at

time t = 0, a shock is announced to be expected at time t1 = 3, lasting until t2 = 5 (the value of c2

being 1.5). Hence at time t = 0, the trajectory will jump from the former stationary equilibrium

point of Figure 2 and Figure 3 to a new point in the phase diagram with the same value for m

but a new (greater) value for u and then follows a continuous trajectory (see Figure 9) toward

the limit value (u∗,m∗) which is nothing else but the initial point before time t = 0.
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 2.6

 2.8
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 2  2.2  2.4  2.6  2.8  3

m’(t) = 0

u*

m0 = m*

Figure 9: Trajectory in the phase diagram for a transitory shock with c as above, k = 0.2, λ = 0.2,
r = 0.05 and η = 0.5. m0 is chosen as the stationary value when P (m) = m− 1

2 – a zoom in the
area of interest has been done.

We can also look at the trajectory followed by m as a function of time (Figure 10) and we see

that once the shock is announced at time 0, the participants in the market start to build produc-

tion capacity to be ready when the shock actually starts. This anticipation induces a decrease

in price (Figure 11) before the shock occurs. Then, after the shock, once the demand level is

back to its initial value, there is a production capacity surplus due to the preceding increase in

production capacity and the price decreases below its asymptotic value before increasing toward

it. Hence, the anticipation of this transitory shock induces a decrease in price both before and

after the shock. This is typical of the forward-backward structure that leads to an impact of the
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shock both before and after the shock.
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m0=m*

Figure 10: Trajectory of m for a transitory shock with c as above, k = 0.2, λ = 0.2, r = 0.05 and
η = 0.5. m0 is chosen as the stationary value when P (m) = m− 1

2 .
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Figure 11: Trajectory of the price for a transitory shock with c as above, k = 0.2, λ = 0.2,
r = 0.05 and η = 0.5. m0 is chosen as the stationary value when P (m) = m− 1

2 .
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4.3 The case of a general demand function

In the preceding paragraphs, we studied the model in the case of a demand function with a shock

either permanent or transitory. In all these situations the demand function was supposed to be

independent of time after a certain period. However, it is important to understand the behavior of

the production capacities for a more general demand function that may evolve in a deterministic

or random way. In this subsection we will focus on the case of a demand function that evolves

in a deterministic fashion and leave the random case to the next section that focuses on a new

approach consisting of writing the problem as a macroscopic problem for a benevolent planner.

The inverse demand function we consider is still of the form p(c(t),m) with (c,m) ∈ R+×R∗
+ 7→

p(c,m) = cm−η and where t → c(t) is a given (deterministic) continuous function that is positive5

and bounded.

In this general framework no phase diagram can be built and the very existence of a solution

(u,m) to (FBDS) is at stake.

To deal with this issue, we recall that a solution (u,m) of (FBDS) must satisfy

u′(t) = (r + λ)u(t)− p(c(t),m(t))

m′(t) = ku(t)− λm(t) m(0) = m0

and

u(0) =

∫ ∞

0

p(c(t),m(t))e−(r+λ)tdt

Now, up to some technical restrictions to avoid negative values for u and m, we can look for

a value u0 of u(0) in coherence with the constraint u(0) =
∫∞
0

p(c(t),m(t))e−(r+λ)tdt.

If we consider indeed the forward/backward system

u′(t) = (r + λ)u(t)− p(c(t),m(t)) u(0) = u0

m′(t) = ku(t)− λm(t) m(0) = m0

we can easily prove that ∀t,m(t) is an increasing and continuous function of u0.

5We have in fact to impose a lower bound strictly greater than 0
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Hence,
∫∞
0

p(c(t),m(t))e−(r+λ)tdt is a decreasing and continuous function of u0. As a consequence,

there is only one value for u0 such that the solution of the above forward/backward system verifies

u0 = u(0) =
∫∞
0

p(c(t),m(t))e−(r+λ)tdt.

Now, to solve the problem numerically in such a general situation, we can use the same ideas

as before, although they are not best suited to case for which we do not have information on

asymptotic values. Rather, we will use another method that will be useful to solve the problem

even when c has a random component. This new method will be exemplified on this model and

then presented in a very general case in the next part.

5 A first planning problem

In this section we go back to the initial problem and wonder whether the decentralized problem in

which each agent chooses his production capacity is equivalent to a problem faced by a benevolent

planner or monopoly that would own all the potential production capacities and make a decision

for all producers. We will in fact state the circumstances under which a macroscopic control

problem does exist from which we can deduce the solution of the decentralized problem.

5.1 The approach

If we consider the problem of a planner that faces a deterministic inverse demand function P̃ (t, ·)
and owns all the potential production capacities, this problem is6:

sup
q(t)

∫ ∞

0

(
m(t)P̃ (t,m(t))− q(t)2

2k

)
e−rtdt

s.t. m′(t) = q(t)− λm(t), m(0) = m0

This problem can be solved using a Bellman approach and we introduce the value function

(t,m) 7→ Φ(t,m) defined by:

Φ(t,m) = sup
q

∫ ∞

t

(
m(s)P̃ (s,m(s))− q(s)2

2k

)
e−r(s−t)ds

s.t. m′(s) = q(s)− λm(s), m(t) = m

This function Φ verifies the following Hamilton-Jacobi equation:

6We recall that to introduce a new production capacity of size qdt between t and t+dt, the cost to pay is q2

2kdt.
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∂tΦ(t,m)− rΦ(t,m) +mP̃ (t,m) + sup
q

(
∂mΦ(t,m)(q − λm)− q2

2k

)
= 0

i.e.

∂tΦ(t,m)− rΦ(t,m) +mP̃ (t,m)− λm∂mΦ(t,m) +
k

2
(∂mΦ(t,m))2 = 0

and the optimal control is q(t,m) = k∂mΦ(t,m).

Now, the trajectory followed by m is:

m(0) = m0, m′(t) = k∂mΦ(t,m(t))− λm(t)

By analogy with the dynamics in the decentralized problem, let us introduce a function v defined

by:

v(t) = ∂mΦ(t,m(t))

If we differentiate the Hamilton-Jacobi equation verified by Φ with respect to the variable m

we get:

∂t∂mΦ(t,m)− r∂mΦ(t,m) + ∂m

(
mP̃ (t,m)

)
− λ∂mΦ(t,m)

−λm∂2
mmΦ(t,m) + k∂2

mmΦ(t,m)∂mΦ(t,m) = 0

Hence,

v′(t) = ∂t∂mΦ(t,m(t)) +m′(t)∂2
mmΦ(t,m(t))

= ∂t∂mΦ(t,m(t)) + k∂mΦ(t,m(t))∂2
mmΦ(t,m(t))− λm(t)∂2

mmΦ(t,m(t))

= (r + λ)∂mΦ(t,m(t))− ∂m

(
m(t)P̃ (t,m(t))

)
= (r + λ)v(t)− ∂m

(
m(t)P̃ (t,m(t))

)
Sincem′(t) = kv(t)−λm(t), we see that if we consider a function P̃ such that ∂m

(
mP̃ (t,m)

)
=

P (t,m) then (v,m) verifies the same equation as (u,m) and hence7 both u and m can be derived

from Φ.

This approach may seem weird at first sight because the demand function has been changed.

We argue that to solve the decentralized problem, we can consider the problem faced by a plan-

7We will show in the next section a very general result corresponding to this approach, though in finite horizon,
and the additional difficulty here is the transversality condition, a difficulty that is not tackled in this text.
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ner with a different pay-off. We shall see with a lot more generality, that, if the gradient of this

new payoff with respect to m is the payoff of the agents in the initial decentralized problem, then

the solution of the decentralized problem can be derived from the solution of the planning problem.

In our case, if P (t,m) = p(c(t),m) = c(t)m−η, then we need to solve the following Hamilton-

Jacobi equation for Φ:

∂tΦ(t,m)− rΦ(t,m) +
1

1− η
c(t)m1−η − λm∂mΦ(t,m) +

k

2
(∂mΦ(t,m))2 = 0

with the appropriate transversality condition8.

5.2 Application to a random demand shifter

In the last paragraphs of this first part, we turn to the case of a random demand shifter c(t).

Now c(t) will stand for a continuous stochastic process and we consider for the sake of simplicity

– and because it is the most relevant hypothesis in terms of modeling – the case of an Ornstein-

Uhlenbeck process:

dc(t) = −α(c(t)− c̄)dt+ σdWt

where W stands for a standard brownian motion independent of the Poisson process introduced

above to rule the life cycle of a production capacity.

In this context, there is nothing like a deterministic function u(t) and we need to write the

problem faced by each potential participant in the market as depending on U(c,m). The expected

intertemporal profit (per unit of production capacity) of an agent entering the market when total

supply is m and when the value of the demand shifter is c:

U(c,m) = E
[∫ ∞

0

p(c(t),m(t))e−(r+λ)tdt | c(0) = c,m(0) = m

]
with

dc(t) = −α(c(t)− c̄)dt+ σdWt, m′(t) = kU(c(t),m(t))− λm(t)

From this definition, U satisfies a partial differential equation that is:

p(c,m)− (r + λ)U(c,m) + (kU(c,m)− λm)∂mU(c,m)

−α(c− c̄)∂cU(c,m) +
σ2

2
∂2
ccU(c,m) = 0

8In practice we solve the same equation with a finite horizon T and the final condition Φ(T,m) = 0. Il
corresponds to imposing u(T ) = 0 in the decentralized problem so that the solution is well approximated for t ≪ T
(and T large enough)
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Now, if we use the planning problem approach with the modified demand function associated

to p(c,m) = cm−η , we will see that this equation can be obtained through the differentiation of

an Hamilton-Jacobi equation.

Let us indeed, as above, introduce the following planning problem in which the payoff is an

antiderivative of p(c,m) with respect to m:

sup
q(t)

E

[∫ ∞

0

(
1

1− η
c(t)m(t)1−η − q(t)2

2k

)
e−rtdt

]
s.t. m′(t) = q(t)− λm(t), m(0) = m0

and dc(t) = −α(c(t)− c̄)dt+ σdWt, c(0) = c0

Let us introduce the value function (c,m) 7→ Φ(c,m) associated to this problem.

By definition:

Φ(c,m) = sup
q(t)

E

[∫ ∞

0

(
1

1− η
c(t)m(t)1−η − q(t)2

2k

)
e−rtdt | c(0) = c,m(0) = m

]
s.t. m′(t) = q(t)− λm(t), dc(t) = −α(c(t)− c̄)dt+ σdWt

Φ verifies the following Hamilton-Jacobi-Bellman equation:

−rΦ(c,m) +
1

1− η
cm1−η + sup

q

(
(q − λm)∂mΦ(c,m)− q2

2k

)

−α(c− c̄)∂cΦ(c,m) +
σ2

2
∂2
ccΦ(c,m) = 0

i.e.

−rΦ(c,m) +
1

1− η
cm1−η − λm∂mΦ(c,m) +

k

2
(∂mΦ(c,m))2

−α(c− c̄)∂cΦ(c,m) +
σ2

2
∂2
ccΦ(c,m) = 0

Now, if we differentiate this equation with respect to m, we obtain:

−r∂mΦ(c,m) + cm−η − λ∂mΦ(c,m)− λm∂2
mmΦ(c,m) + k∂mΦ(c,m)∂2

mmΦ(c,m)

−α(c− c̄)∂c∂mΦ(c,m) +
σ2

2
∂2
cc∂mΦ(c,m) = 0

i.e.

−(r + λ)∂mΦ(c,m) + p(c,m) + (k∂mΦ(c,m)− λm) ∂2
mmΦ(c,m)

−α(c− c̄)∂c∂mΦ(c,m) +
σ2

2
∂2
cc∂mΦ(c,m) = 0
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and we see that, as announced, ∂mΦ verifies the same equation as U .

5.3 Empirical results

The preceding method will be used extensively for the remainder of this paper. To exemplify this,

let us start with a particular specification of the above model with a random demand shifter.

First we start with the dynamics for m:

m′(t) = k∂mΦ(t,m(t))− λm(t)

with k = 0.2 and λ = 0.2.

Profits are discounted at rate r = 5%.

The inverse demand function is P (t,m) = c(t)m−η with η = 0.5 and c an Ornstein-Uhlenbeck

process:

dc(t) = −α(c(t)− c̄)dt+ σdWt

where α = 0.2, c̄ = 1 and σ = 0.15.

A trajectory for c is drawn for 150 years on Figure 12.
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Figure 12: Trajectory of c with α = 0.2, c̄ = 1 and σ = 0.15. Reflections have been introduced at
c = 0.5 and c = 1.5.
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Then Φ is solved using classical methods for stationary solutions of Hamilton-Jacobi-Bellman

equations (Figure 13).

Figure 13: Resolution of the equation for Φ with c ∈ [0.5, 1.5] (Neumann condition) andm ∈ [2, 3].

Using the function Φ, we can deduce U (Figure 14).

Figure 14: U with c ∈ [0.5, 1.5] (and Neumann condition) and m ∈ [2, 3].
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From U , we can compute the trajectory for m (Figure 15).
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Figure 15: Trajectory of m.

Finally, oil prices can be deduced from the available production capacities (Figure 16).
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Figure 16: Oil prices.
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6 Comments

In the above model, we studied the reaction of the oil producers to demand shocks. Since supply

adjustments are costly and can only be done progressively by the choices of each producer enter-

ing the market, the demand shocks are instantaneously transformed into prices shocks and then

slowly attenuated through quantity adjustments.

If we consider indeed a textbook supply-demand graph, we see (Figure 17) that if demand

increases instantaneously (the change in demand being unexpected, contrary to the case of section

4 above), instead of going from the equilibrium point A to the new equilibrium point C, the system

instantaneously goes to point B (inducing an increase in prices) and then progressively goes along

the demand curve toward the equilibrium point C, unless other shocks happen in the meanwhile

as it is the case in our numerical examples.
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qA=qB

qC
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Figure 17: Supply-Demand Graph with/without capacity constraints.

If we look now more carefully at the above numerical results, focusing on the last 20 years, we

see that the total supply (Figure 19) roughly follows the trend in the trajectory of c (Figure 18).

However, from c to m, the variations are smoothen a lot and in terms of prices, we see (Figure 20)

that, due to the form of the demand function, the variation of the demand shifter c is almost

perfectly transmitted to prices.

As a consequence, our model appears as a way to describe the complex transmission of a demand

shock to prices: the price reaction function.
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Figure 18: Focus on the trajectory of c with α = 0.2, c̄ = 1 and σ = 0.15. Reflections have been
introduced at c = 0.5 and c = 1.5.
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Figure 19: Focus on the trajectory of m.
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Figure 20: Focus on the oil prices.

But our model is also, and most importantly, able to explain a lot of phenomena depending

on the demand function. For instance, taking an inverse demand function of the form P (c,m) =

H
(

c
m

)
with H(z) =

1, if z ≤ 1
2

1
2
, otherwise

we can observe a skewness in price distribution and hence a

few excursion of prices at the high price (Figures 21 to 23).
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Figure 21: Trajectory of c with α = 0.2, c̄ = 1 and σ = 0.15.
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Figure 22: Trajectory of m.
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Figure 23: Oil prices.
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Part II

The planning problem approach

1 Introduction

The planning problem approach presented in a previous example is in fact a new general approach

developed for this work on oil production. It is effectively a new approach to deal with mean field

games that relies on an equivalence between decentralized problems and planning problems for

some specific games that we call potential games, due to an analogy with some preceding works.

A similar approach was indeed used for mean field games in reduced form9 and can be generalized

to cases in which the value function depends not only on each player’s state but also on the

distribution of the players’ state. This more general case especially allows for games with common

noise.

2 The decentralized problem

We present the result for a discrete state space as it will be used in the remainder of this paper.

However, although the result will be used on a simple case for which states are successive states

in the production capacity building process, we consider in this part the more general case of a

connected graph10. The result will be proved in a framework that can have slight variants and it

9Let us indeed consider the mean field games equations as in [7, 8, 9]:

(HJB) ∂tu+
σ2

2
∆u+H(∇u) = −f(x,m)

(K) ∂tm+∇ · (m∂pH(∇u,m)) =
σ2

2
∆m

with
u(T, x) = g(x,mT ), m(0, x) = m0(x)

These equations correspond to a problem in which infinitely many agents try to maximize a similar criterion
depending on their own position in the state space and on the distribution of the positions of all the agents or
players in the state space. Now, if there exist two functions m 7→ F (m) and m 7→ G(m) such that the derivatives of
F and G in the variational sense are respectively f and g then m can be derived from the following maximization
problem

sup
(αt)t≥0

E

[∫ T

0

(F (m(t))−H∗(αt)) dt+G(m(T ))

]

s.t. ∂tm+∇ · (mαt) =
σ2

2
∆m, m(0) = m0

The optimal control is the same and u is the adjoint state associated to this maximization problem.
10The result is however proved in the case of a finite horizon problem to avoid problems linked to transversality

conditions
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must be noted that the only important restriction is that Hamiltonian functions have to be inde-

pendent of the distribution of the players in the state space (as it was the case for the analogous

result concerning mean field games in reduced form). In other words, the result we will prove

cannot be generalized to models involving congestion effects such as traffic jam models.

2.1 Setup

Let us consider a state space S consisting of N states indexed from 1 to N . These states are the

nodes of a connected graph and we denote for each i ∈ S, the neighbors of the node i by Vi. This

graph is supposed to be directed and consequently j ∈ Vi means that there is an edge from i to

j (but not necessarily from j to i).

We consider a continuum of agents. Each agent can be in any state of the state space and the

number of agent in state i is denoted mi.

Each agent’s state is a continuous Markov chain that we generically denote Xt.

Transition probabilities are chosen by each agent and we suppose that no edge can be created.

In practice, if an agent is in state i (or, equivalently, if Xt = i), then he chooses (δij(t))j∈Vi
and

the probability for Xt+dt to be j ∈ Vi is δij(t)dt. This choice is costly and we introduce for each

state/node i a cost function Ci((δij)j∈Vi
) that is a convex and increasing function11.

Each state is associated to a payoff and we associate to state i the instantaneous payoff

fi(m1, . . . ,mN) and a final payoff gi(m1, . . . ,mN).

Now, coming to the objective function, we suppose that each agent maximizes:

sup
(δij(t))i∈S,j∈Vi,t≥0

E
[∫ T

0

(
fXt(m1(t), . . . ,mN(t))− CXt((δXtj)j∈VXt

)
)
e−rt dt

+gXT
(m1(T ), . . . ,mN(T ))

]
with

∀i ∈ S,m′
i(t) =

∑
{k/i∈Vk}

δ∗ki(t)mk(t)−
∑
j∈Vi

δ∗ij(t)mi(t)

(δ∗ij(t))i∈S,j∈Vi
being the optimal instantaneous transition probability.

This problem enters the class of general mean field games and we will prove in the next section

that, for some payoff functions (f1, . . . , fN) and (g1, . . . , gN), this problem faced by infinitely many

players (and called for this very reason a decentralized problem) derived from an optimization

problem faced by a planner that can be solved more easily.

11This function equals 0 when (δij)j∈Vi
= 0.
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2.2 Hamilton-Jacobi Equations

Let us start with the Hamilton-Jacobi equations that characterize the decentralized problem.

Since there are N states, we need to write down N Hamilton-Jacobi equations, one for each state.

Let us denote by ui(t,m1, . . . ,mN) the value function associated to being in state i at time t

when the distribution of agents across the different states is given by the tuple (m1, . . . ,mN).

From classical control theory we obtain the following system of partial differential equations

consisting of N coupled Hamilton-Jacobi equations:

∀i ∈ S, ∂ui

∂t
(t,m1, . . . ,mN)− rui(t,m1, . . . ,mN) + fi(m1, . . . ,mN)

+ sup
(δij)j∈Vi

[∑
j∈Vi

δij(uj(t,m1, . . . ,mN)− ui(t,m1, . . . ,mN))− Ci((δij)j∈Vi
)

]

+
N∑
j=1

∂ui

∂mj

(t,m1, . . . ,mN)

 ∑
k/j∈Vk

δ∗kj(t)mk −
∑
k∈Vj

δ∗jk(t)mj

 = 0

with the terminal value

ui(T,m1, . . . ,mN) = gi(m1, . . . ,mN)

Now let us introduce the Hamiltonian functions

Hi((pij)j∈Vi
) = sup

(δij)j∈Vi

[∑
j∈Vi

δijpij − Ci((δij)j∈Vi
)

]

We have ∀i ∈ S,∀j ∈ Vi:

δ∗ij(t) =
∂Hi

∂pij
((uj(t,m1, . . . ,mN)− ui(t,m1, . . . ,mN))j∈Vi

)

Hence, the system of Hamilton-Jacobi equations can be written in a simpler way:

∀i ∈ S, 0 =
∂ui

∂t
− rui + fi +Hi((uj − ui)j∈Vi

)

+
N∑
j=1

∂ui

∂mj

 ∑
{k/j∈Vk}

∂Hk

∂pkj
((uj − uk)j∈Vk

)mk −
∑
k∈Vj

∂Hj

∂pjk
((uk − uj)k∈Vj

)mj


with the terminal condition ui(T ) = gi.
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This system of N coupled partial differential equations may reduce to a single Hamilton-

Jacobi-Bellman equation in the case of “potential games”. This is what we are going to prove in

the next section.

3 Potential games and reduction to a planning problem

3.1 Theoretical aspects

In this section, we suppose that there exists a function (m1, . . . ,mN) 7→ F (m1, . . . ,mN) such

that ∀i ∈ S, ∂F
∂mi

= fi(m1, . . . ,mN) and similarly, we suppose that there exists a function

(m1, . . . ,mN) 7→ G(m1, . . . ,mN) such that ∀i ∈ S, ∂G
∂mi

= gi(m1, . . . ,mN).

In that case, the game is called a potential game and we have the following result:

Proposition 3. Let us suppose there exist two functions F and G such that ∇F = (f1, . . . , fN)
′

and ∇G = (g1, . . . , gN)
′.

Let us consider the following optimization problem – called the planning problem.

sup
(δij(t))i∈S,j∈Vi,t≥0

[∫ T

0

(
F (m1(t), . . . ,mN(t))−

N∑
i=1

C((δij(t))j∈Vi
)mi

)
e−rtdt+G(m1(t), . . . ,mN(t))

]

with

∀i ∈ S, m′
i(t) =

∑
{k/i∈Vk}

δki(t)mk(t)−
∑
j∈Vi

δij(t)mi(t)

If the value function (t,m1, . . . ,mN) 7→ Φ(t,m1, . . . ,mN) associated to this problem is a smooth

function, then we have:

∀i ∈ S, ui =
∂Φ

∂mi

and the optimal control (δ∗ij(t))i∈S,j∈Vi
is the same in both the planning problem and in the decen-

tralized problem.

Proof:

The value function Φ associated to the problem verifies the following Hamilton-Jacobi equa-

tion:

0 =
∂Φ

∂t
(t,m1, . . . ,mN)− rΦ(t,m1, . . . ,mN) + F (m1, . . . ,mN)
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+ sup
(δij)1≤i≤N,j∈Vi

∑
1≤i≤N

 ∂Φ

∂mi

(t,m1, . . . ,mN)

 ∑
{k/i∈Vk}

δkimk −
∑
j∈Vi

δijmi

− Ci((δij)j∈Vi
)mi


with the terminal conditions Φ(T,m1, . . . ,mN) = G(m1, . . . ,mN).

Reordering the terms, we get:

0 =
∂Φ

∂t
(t,m1, . . . ,mN)− rΦ(t,m1, . . . ,mN) + F (m1, . . . ,mN)

+
∑

1≤i≤N

mi sup
(δij)j∈Vi

[∑
j∈Vi

δij

(
∂Φ

∂mj

(t,m1, . . . ,mN)−
∂Φ

∂mi

(t,m1, . . . ,mN)

)
− Ci((δij)j∈Vi

)

]

Using the Hamiltonian functions (Hi)i introduced previously, this equation becomes:

0 =
∂Φ

∂t
− rΦ + F +

∑
1≤i≤N

miHi

((
∂Φ

∂mj

− ∂Φ

∂mi

)
j∈Vi

)
If we differentiate this equation with respect to mk we get:

0 =
∂2Φ

∂t∂mk

− r
∂Φ

∂mk

+
∂F

∂mk

+Hk

((
∂Φ

∂mj

− ∂Φ

∂mk

)
j∈Vk

)

+
∑

1≤i≤N

mi

∑
j∈Vi

(
∂2Φ

∂mj∂mk

− ∂2Φ

∂mi∂mk

)
∂Hi

∂pij

((
∂Φ

∂mj

− ∂Φ

∂mi

)
j∈Vi

)

Hence, denoting ∀i ∈ S, vi = ∂Φ
∂mi

, we get:

0 =
∂vk
∂t

− rvk + fk +Hk

(
(vj − vk)j∈Vk

)
+
∑

1≤i≤N

mi

∑
j∈Vi

(
∂vk
∂mj

− ∂vk
∂mi

)
∂Hi

∂pij

(
(vj − vi)j∈Vi

)
Reordering the terms we get:

0 =
∂vk
∂t

− rvk + fk +Hk

(
(vj − vk)j∈Vk

)
+
∑

1≤i≤N

∂vk
∂mi

 ∑
{j/i∈Vj}

∂Hj

∂pji
((vi − vj)i∈Vj

)mj −
∑
j∈Vi

∂Hi

∂pij
((vj − vi)j∈Vi

)mi


Since vk(T ) =

∂G
∂mk

= gk, we indeed have that vk = ∂Φ
∂mk

= uk the value function of the decen-

tralized problem.

Moreover, the optimal control in the planning problem are characterized by:
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δ∗ij =
∂Hi

∂pij

((
∂Φ

∂mj

− ∂Φ

∂mi

)
j∈Vi

)
and these equations are the same as in the decentralized problem.

The above proposition shows that we can solve the decentralized problem thanks to the in-

troduction of a planning problem. Hence, instead of N Hamilton-Jacobi equations, we only have

one Hamilton-Jacobi equation to solve.

It is also noteworthy that this result can be slightly generalized to cases in which there are

exogenous sources of new agents entering the system at some nodes. This straightforward gener-

alization will be used in our model for oil production.

3.2 Practical use

The above result applies for potential games and this class of games may seem to be quite small

since the payoff functions (f1, . . . , fN) associated to the states must come from a single function

F (with ∇F = (f1, . . . , fN)
′) and similarly for the terminal payoff12.

In practice, a simple class of potential games corresponds to games for which payoff functions

are local functions in the sense that ∀i ∈ S, fi(m1, . . . ,mN) only depends on mi.

In that case, denoting the function fi by fi : mi 7→ fi(mi), the function F entering the planning

problem’s objective function can simply be:

F (m1, . . . ,mN) =
N∑
i=1

Fi(mi)

where ∀i ∈ S, Fi is an antiderivative of fi.

Models of this kind are quite common and the model we will present for production capacity

building within the oil industry enters this category. In our models, the different states will

correspond to different stages in the building of production capacities and the payoff functions

will be 0 for all states but one: the last one corresponding to actual production.

12In practice, we will often consider infinite horizon problem. Hence, the condition on the terminal payoff will
be assumed to be 0 in numerical computations and we only need to focus on the payoff functions (f1, . . . , fN ).
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Part III

A production capacity building model

In this part, we present the central application of the planning problem approach to the “time-

to-build” literature. Oil industry is indeed characterized by a long industrial process going from

geological studies to actual oil extraction and this process involves risk at each step. The geolog-

ical studies may induce drilling at some place where drilling is more complicated and costly than

expected, drilling may eventually end up to a dry well, geopolitical or social tensions may slow

the extraction process, etc.

In terms of modeling it means that an increase in demand cannot be immediately satisfied by new

supply and will rather induce an increase in prices. New projects to build production capacities

may be launched but these projects take time to result in new production capacities, if at all.

In the first section of this part, we build the first brick of the model that only involves

production. To take account of the risk involved in extraction and to model the fact that this

risk may be partially controlled, we opted for a crude modeling in which producers pay a cost

to reduce the probability that a given production unit breaks down (the production unit being

definitively lost in that case). Then, the “time-to-build” model is presented with several steps

before ending up to a production unit. Each step corresponds to an industrial stage and the risk

is modeled by a probability to go from one industrial stage to the next one, each producer paying

a cost to foster this transition from one step to the next.

1 A first brick

1.1 The model

Let us start with a model in which production capacities are immediately available for production.

Contrary to the models of the first part in which the producer controls new production capacities,

we suppose now that there is a constant exogenous flow of new producers with a unitary produc-

tion capacity and that each producer controls, up to a cost, the probability of a break down or

equivalently the probability of staying in the market. The advantage of such a modeling over the

models of the first part is that it can be generalized to take account of “time-to-build” effects.

Each producer with unitary production capacity is going to maximize an objective function

similar to the objective function of the first models. The difference is that optimization is not
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anymore on the production capacity itself but rather on the intensity of the Poisson process that

governs the final failure of the production unit.

Denoting λ as above, the intensity of the controlled Poisson process, the optimization problem

is:

sup
(λ(t))t

E
[∫ τ

0

(p(c(t),m(t))− Cprod(λ(t))) e
−rtdt

]
where the stopping time τ is linked to λ by P (τ ≤ t+ dt|τ > t) = λ(t)dt.

Cprod is a positive and decreasing function such as Cprod(λ) =
1

2kλ2 since one needs to pay more

to have a better chance to use a given production capacity for a long time.

Now, if we choose a dynamics for c identical to the one used in the preceding models (dc(t) =

−α(c(t)−c̄)dt+σdWt), then the numberm of available production capacities satisfies the following

equation:

m′(t) = 1− λ∗(c(t),m(t))m(t)

where λ∗ is the optimal control that only depends on c and m.

1.2 Hamilton-Jacobi-Bellman equation and the counterpart planning

problem

Let us denote (c,m) 7→ U(c,m) the value function associated to this decentralized problem.

U verifies the following partial differential equation:

p(c,m)− rU(c,m) + ∂mU(c,m)(1− λ∗(c,m)m) + sup
λ

(−λU − Cprod(λ))

−α(c− c̄)∂cU(c,m) +
σ2

2
∂2
ccU(c,m) = 0

If we introduce Hprod(p) = supλ (λp− Cprod(λ)), then the optimal control is:

λ∗(c,m) = H ′
prod(−U(c,m))

Hence, the partial differential equation satisfied by U is:

p(c,m)− rU(c,m) + ∂mU(c,m)(1−H ′
prod(−U(c,m))m) +Hprod(−U(c,m))

−α(c− c̄)∂cU(c,m) +
σ2

2
∂2
ccU(c,m) = 0
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This equation derives for the Hamilton-Jacobi-Bellman equation of a global problem. Let us

indeed consider a benevolent planner that faces the following problem:

sup
(λ(t))t

∫ ∞

0

(π(c(t),m(t))− Cprod(λ(t))m(t)) e−rtdt

s.t. m′(t) = 1− λ(t)m(t)

with ∂π
∂m

= p.

Then the value function Φ of this problem satisfies:

π(c,m)− rΦ(c,m) + sup
λ

(∂mΦ(c,m)(1− λm)− Cprod(λ)m)

−α(c− c̄)∂cΦ(c,m) +
σ2

2
∂2
ccΦ(c,m) = 0

This can be equivalently written as:

π(c,m)− rΦ(c,m) + ∂mΦ(c,m) +m sup
λ

(−λ∂mΦ(c,m)− Cprod(λ))

−α(c− c̄)∂cΦ(c,m) +
σ2

2
∂2
ccΦ(c,m) = 0

i.e.:

π(c,m)− rΦ(c,m) + ∂mΦ(c,m) +mHprod(−∂mΦ(c,m))

−α(c− c̄)∂cΦ(c,m) +
σ2

2
∂2
ccΦ(c,m) = 0

As in Proposition 3 of the preceding part, we see that U and ∂mΦ satisfy the same equation.

Now, we want to add some steps before a production capacity is available for production and

this is the purpose of the next section.

2 Time to build

2.1 Setup of the model

Let us suppose that the industrial process to obtain an actual production capacity is made of

N − 1 steps. Flows of new possible producers are the same as above but they enter the system

with a project to build one unit of production capacity (the project being initially in step 1).
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We model the progress in production capacity building through an instantaneous probability

to go from a given step to the next one. We indeed introduce a set of instantaneous probability

δ1, . . . , δN−1 where δidt represents the probability to go from step i to the next one between t and

t+ dt, step N corresponding to actual production.

Our hypothesis is now that each producer can foster the process and pays a cost Ci(δi) to have

an instantaneous probability δi associated to step i.

Once the N − 1 steps has been gone through, the production capacity is available for actual

production and the model is the same as in the preceding section.

Hence, the model, although there is a source term, enters the framework developed in the

preceding part with N nodes (here N − 1 stages with no payoff and a particular state associated

to production). In this last state (sometimes denoted N for convenience), the payoff is p(c,m).

Edges of the graph are between successive nodes to model the transition from one step to the

following one.

The model can be summed up by the following graph representation:

1
step 1

δ1
step 2

δ2
step 3

δ3
...

δN−2

step
N − 1 δN−1

production λ

2.2 Partial differential equations

In this mean field game, each agent computes an optimal control that takes the form of a N-

tuple (δ∗1, . . . , δ
∗
N−1, λ

∗). Because agents are identical, although they are not all in the same state,

the optimal controls are identical across agents and we can consider (δ∗1, . . . , δ
∗
N−1, λ

∗) to be the

instantaneous probability of the Markov chain that describe the system as a whole. Hence, if

we denote by m1, . . . ,mN the number of producers in each of the N − 1 steps of production

capacity building and if, for notational simplification, we denote by mN the current available

total production capacity, then the dynamics of the mis are:

m′
1(t) = 1− δ∗1(t)m1(t)

m′
i(t) = δ∗i−1(t)mi−1(t)− δ∗i (t)mi(t), 2 ≤ i ≤ N − 1

m′
N(t) = δ∗N−1(t)mN−1(t)− λ∗(t)mN(t)
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Now, turning to the determination of the optimal control (δ∗1, . . . , δ
∗
N−1, λ

∗), we have to introduce

a value function for each N − 1 step and a value function for the production state. Since we can

restrict ourselves to stationary solutions13, let us denote these value functions u1(c,m1, . . . ,mN)

for state 1, . . ., uN−1(c,m1, . . . ,mN) for state N − 1 and eventually uN(c,m1, . . . ,mN) for the

value function associated to the production state (similarly, the optimal control will now depend

on (c,m1, . . . ,mN)).

First, we can write the N − 1 equations satisfied by (u1, . . . , uN−1):

∀1 ≤ i ≤ N − 1, 0 = −rui − α(c− c̄)∂cui +
σ2

2
∂2
ccui

+(1− δ∗1m1)∂m1ui +
N−1∑
j=2

(δ∗j−1mj−1 − δ∗jmj)∂mj
ui

+(δ∗N−1mN−1 − λ∗mN)∂mN
ui + sup

δi

(δi(ui+1 − ui)− Ci(δi))

and denoting Hi(p) = supδ (δp− Ci(δi)), we have:

δ∗i = H ′
i(ui+1 − ui)

Now, since there is a payoff when production occurs, the equation for uN is different from the

preceding ones and we get:

∀1 ≤ i ≤ N − 1, 0 = −ruN + p(c,mN)− α(c− c̄)∂cuN +
σ2

2
∂2
ccuN

+(1− δ∗1m1)∂m1uN +
N−1∑
j=2

(δ∗j−1mj−1 − δ∗jmj)∂mj
uN

+(δ∗N−1mN−1 − λ∗mN)∂mN
uN + sup

λ
(−λuN − Cprod(λ))

and denoting Hprod(p) = supλ (λp− Cprod(λ)), we have:

λ∗ = H ′
prod(−uN)

Now, in the framework of the preceding part, the payoffs associated to states 1 to N − 1 are 0

and the payoff associated to the production state is p(c,mN). Hence, we consider an antiderivative

π(c,mN) of p(c,mN) with respect to mN . We know there exists a planning problem equivalent

to our problem. Thus, we can solve only one partial differential equation, then find the optimal

control (δ∗1, . . . , δ
∗
N−1, λ

∗) and eventually compute the equilibrium dynamics for supply and prices.

13the time dependence being absorbed by the variable c.
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The problem of the social planner as in Proposition 3 of the preceding part writes here:

sup
(δ1,...,δN−1,λ)

∫ ∞

0

(
π(c(t),mN(t))−

(
N−1∑
i=1

Ci(δi(t))mi(t)

)
− Cprod(λ(t))mN(t)

)
e−rtdt

where:

m′
1(t) = 1− δ1(t)m1(t)

m′
i(t) = δi−1(t)mi−1(t)− δi(t)mi(t), 2 ≤ i ≤ N − 1

m′
N(t) = δN−1(t)mN−1(t)− λ(t)mN(t)

If Φ is the value function associated to this problem then Φ verifies the following Hamilton-

Jacobi equation:

0 = −rΦ + π(c,mN)− α(c− c̄)∂cΦ +
σ2

2
∂2
ccΦ

+ sup
(δ1,...,δN−1,λ)

[
(1− δ1m1)∂m1Φ +

N−1∑
j=2

(δj−1mj−1 − δjmj)∂mj
Φ

+(δN−1mN−1 − λmN)∂mN
Φ−

N−1∑
j=1

Cj(δj)mj − Cprod(λ)mN

]
Reordering the terms we obtain:

0 = −rΦ + π(c,mN)− α(c− c̄)∂cΦ +
σ2

2
∂2
ccΦ

+∂m1Φ +
N−1∑
j=1

mj sup
δj

(
δj(∂mj+1

Φ− ∂mj
Φ)− Cj(δj)

)
+mN sup

λ
(−∂mN

Φλ− Cprod(λ))

Hence, using the hamiltonian functions introduced before we get:

0 = −rΦ + π(c,mN)− α(c− c̄)∂cΦ +
σ2

2
∂2
ccΦ

+∂m1Φ +
N−1∑
j=1

mjHj(∂mj+1
Φ− ∂mj

Φ) +mNHprod (−∂mN
Φ)

and the optimal controls are:

∀1 ≤ j ≤ N − 1, δ∗j = H ′
j

(
∂mj+1

Φ− ∂mj
Φ
)
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and

λ∗ = H ′
prod(−∂mN

Φ)

3 Numerics

We present below numerical examples for the model we presented above. First, we focus on the

N = 1 case and then consider the timeto build model with N = 2.

3.1 The model with N = 1

We first consider the N = 1 case.

The cost function associated to λ is Cprod(λ) =
1

2kλ2 with k = 12.

The inverse demand function is P (t,m) = c(t)m−η with η = 0.5 and c an Ornstein-Uhlenbeck

process:

dc(t) = −α(c(t)− c̄)dt+ σdWt

where α = 0.2, c̄ = 1 and σ = 0.15.

Profits are discounted at rate r = 25%. A trajectory for c is drawn for 150 years on Figure 24.
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Figure 24: Trajectory of c with α = 0.2, c̄ = 1 and σ = 0.15. Reflections have been introduced at
c = 0.5 and c = 1.5.

Then Φ is solved using implicit methods for stationary solutions of Hamilton-Jacobi-Bellman
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equations (Figure 25).

Figure 25: Resolution of the equation for Φ with c ∈ [0.5, 1.5] (Neumann condition) andm ∈ [2, 3].

Using the function Φ, we can deduce U (Figure 26).

Figure 26: U with c ∈ [0.5, 1.5] (and Neumann condition) and m ∈ [2, 3].

We see that U is naturally increasing with c since an increase in c induces an increase in
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expected profits. Similarly, U is decreasing with m.

Now, from U , we can compute the trajectory for m (Figure 27).
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Figure 27: Trajectory of m.

Finally, oil prices can be deduced from the available production capacities (Figure 28).
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Figure 28: Oil prices.
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3.2 The model with N = 2

Let us now turn to the N = 2 case.

The cost function associated to δ1 is C1(δ1) =
δ21
2k1

with k1 = 1.4.

The cost function associated to λ is Cprod(λ) =
1

2k2λ2 with k2 = 12.

The inverse demand function is P (t,m) = c(t)m−η with η = 0.5 and c an Ornstein-Uhlenbeck

process:

dc(t) = −α(c(t)− c̄)dt+ σdWt

where α = 0.2, c̄ = 1 and σ = 0.15. Profits are discounted at rate r = 25%.

A trajectory for c is drawn for 150 years on Figure 29.
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Figure 29: Trajectory of c with α = 0.2, c̄ = 1 and σ = 0.15. Reflections have been introduced at
c = 0.5 and c = 1.5.
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Then Φ is solved using implicit methods for stationary solutions of Hamilton-Jacobi-Bellman

equations (Figure 30).

Figure 30: Resolution of the equation for Φ. The surface represented corresponds to c = 1.

Using the function Φ, we can deduce U1 (Figure 31).

Figure 31: U1. The surface represented corresponds to c = 1.
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Similarly, we obtain U2 (Figure 32).

Figure 32: U2. The surface represented corresponds to c = 1.

From (U1, U2), we can compute the trajectory for m1 (Figure 33) and m2 (Figure 34).
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Figure 33: Trajectory of m1.
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Figure 34: Trajectory of m2.

Finally, oil prices can be deduced from the available production capacities (Figure 28).
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Figure 35: Oil prices.

To analyze the mechanisms involved in this model, let us remark first that there is a constant
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flow14 of new projects arriving in state 1. Then, when c is increasing, agents with production

units in step 1 are willing to pay more to have a chance to proceed to the actual production

step. Producers in step 2 are also willing to pay more to stay in the market, but the situation

may evolve as more and more production capacities are available for production and consequently

negate the increase in price due to the increase in c. On the other hand, when c is decreasing,

agents in step 1 have less incentive to transform their project into actual production capacities.

Similarly, producers in step 2 want to pay less to stay in the market.

Hence, to understand the important impact of the time-to-build effect, let us suppose that c

was low for quite a long period. In that case, see for instance around t = 36 or around t = 128

on Figures 33 and 34, m2 is low since there is no incentive to stay in the market. In turn, m1 is

very high since the constant flow of new projects has accumulated in step 1 (as long as there was

too many producers in step 2).

Then, when c increases, the agents in step 1 want to produce before the others and there is a rush

to the production state. That is why we observe a higher volatility in the available production

capacity when there is a time-to-build effect.

This setting is in fact very rich and the effects we obtain depend on the choices for the cost

functions. If for instance the cost to go from step 1 to 2 is very high, then the price must increase

a lot before the agents pay the cost to have a better chance to produce. Hence, our framework al-

lows us to model the important rise in price due to the delay in obtaining new production capacity.

14The model of the first part could be plugged to this model to make the arrival flow endogenous.
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Conclusion

In this text we present a new model to describe the progressive adjustment of production capac-

ities to changes in demand. The new modeling framework we provide includes new tools from

mean field games theory and especially tools to tackle, both theoretically and numerically, the

case of common noise. Using very recent works by J.-M. Lasry and P.-L. Lions for Hamilton-

Jacobi-Bellman equations in infinite dimension and adapting them to the simpler case of a finite

state space, we were able to propose a model where the time to build a new production capacity

is taken into account in a flexible way since agents may decide whether or not to foster the arrival

of these new production capacities.

This time-to-build model paves the road for further work in which exploration decisions or inven-

tory management may be taken into account. Moreover, it opens a new field of research in the

design of numerical schemes for the HJB equation arising from a planning problem where all the

states enter the value function.
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Appendix

Source code for the computations of I.3:

exec("one_box_constant_educ.sci");

// solutions

fd = mopen(’one_box_constant_educ.dat’,’w’);

lambda = 0.2;

k=0.2;

c=1;

r=0.05;

nb_t=1001;

T=20;

dt = T/(nb_t-1);

m0 = 0.2;

[mtheta,utheta] = one_box_constant_educ(m0,lambda,k,c,r,nb_t,T,500,0.01);

for i=1:nb_t

mfprintf(fd, ’%f %f %f %f %f %f %f\n’, (i-1)*dt, utheta(200,i), mtheta(200,i),

utheta(400,i), mtheta(400,i), utheta(500,i), mtheta(500,i));

end

mclose(fd);

fd = mopen(’one_box_constant_educ_bis.dat’,’w’);

lambda = 0.2;

k=0.2;

c=1;

r=0.05;

nb_t=1001;

T=20;

dt = T/(nb_t-1);

m0 = 6;

[mtheta,utheta] = one_box_constant_educ(m0,lambda,k,c,r,nb_t,T,500,0.01);

for i=1:nb_t

mfprintf(fd, ’%f %f %f %f %f %f %f\n’, (i-1)*dt, utheta(200,i), mtheta(200,i),
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utheta(400,i), mtheta(400,i), utheta(500,i), mtheta(500,i));

end

mclose(fd);

function [mtheta,utheta] = one_box_constant_educ(m0,lambda,k,c,r,nb_t,

T,nb_theta,dtheta)

dt = T/(nb_t-1);

m_inf = (k*c/lambda/(lambda+r))^(2/3);

u_inf = lambda * m_inf / k;

mtheta = zeros(nb_theta,nb_t);

utheta = zeros(nb_theta,nb_t);

mtheta(1,:) = m0;

utheta(1,:) = u_inf;

for theta=2:nb_theta

integ = 0;

utheta(theta,nb_t) = u_inf;

for t=nb_t-1:-1:1

integ = integ + dt * exp(-(lambda+r)*(t-1)*dt) *c

* 1 /mtheta(theta-1,t)^0.5;

utheta(theta,t) = dtheta*(exp(-(lambda+r)*(nb_t-t)*dt)*u_inf

+ exp((lambda+r)*(t-1)*dt)*integ) + (1 - dtheta)* utheta(theta-1,t);

end

integ=0;

mtheta(theta,1) = m0;

for t=2:nb_t

integ = integ + dt * exp(lambda*(t-1)*dt) *k * utheta(theta-1,t);

mtheta(theta,t) = dtheta*(exp(-lambda*(t-1)*dt)*m0

+ exp(-lambda*(t-1)*dt)*integ) + (1-dtheta)*mtheta(theta-1,t);

end

end

endfunction

Source code for the computations of I.4.1:

exec("one_box_choc_permanent.sci");
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// solutions

fd = mopen(’one_box_choc_permanent.dat’,’w’);

lambda = 0.2;

k=0.2;

c_1=1;

c_2=1.5;

r=0.05;

nb_t=1001;

T=30;

T1=3;

T2=5;

dt = T/(nb_t-1);

m0 = (k*c_1/lambda/(lambda+r))^(2/3);

[m,u,c]=one_box_choc_perm(m0,lambda,k,c_1,c_2,r,nb_t,T1,T2,T,0.01,800);

for i=1:nb_t

mfprintf(fd, ’%f %f %f %f %f\n’, (i-1)*dt, c(i), u(i), m(i), c(i)/m(i)^0.5);

end

mclose(fd);

function [m,u,c]=one_box_choc_perm(m0,lambda,k,c_min,c_max,r,nb_t,

T1,T2,T,dtheta,nb_theta)

dt = T/(nb_t-1);

m_inf = (k*c_max/lambda/(lambda+r))^(2/3);

u_inf = lambda * m_inf / k;

c = zeros(1,nb_t);

for t=1:nb_t

if (t-1)*dt<T1 then

c(t) = c_min;

elseif (t-1)*dt<T2

c(t) = (((t-1)*dt - T1)*c_max + (T2-(t-1)*dt)*c_min)/(T2-T1);

else

c(t) = c_max;

end
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end

m = m0*ones(1,nb_t);

u = u_inf*ones(1,nb_t);

new_m = zeros(1,nb_t);

new_u = zeros(1,nb_t);

for theta=2:nb_theta

integ = 0;

new_u(1,nb_t) = u_inf;

for t=nb_t-1:-1:1

integ = integ + dt * exp(-(lambda+r)*(t-1)*dt)*c(t)

* (1/sqrt(m(1,t)));

new_u(t) = dtheta*(exp(-(lambda+r)*(nb_t-t)*dt)*u_inf

+ exp((lambda+r)*(t-1)*dt)*integ) + (1 - dtheta)* u(1,t);

end

integ=0;

new_m(1,1) = m0;

for t=2:nb_t

integ = integ + dt * exp(lambda*(t-1)*dt) *k * u(1,t);

new_m(1,t) = dtheta*(exp(-lambda*(t-1)*dt)*m0

+ exp(-lambda*(t-1)*dt)*integ) + (1-dtheta)*m(1,t);

end

u=new_u;

m=new_m;

end

endfunction

Source code for the computations of I.4.2:

exec("one_box_choc_transitoire.sci");

// solutions

fd = mopen(’one_box_choc_transitoire.dat’,’w’);

lambda = 0.2;

k=0.2;

c_1=1;
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c_2=1.5;

r=0.05;

nb_t=3001;

T=30;

T1=3;

T2=5;

dt = T/(nb_t-1);

m0 = (k*c_1/lambda/(lambda+r))^(2/3);

[m,u,c]=one_box_choc_tran(m0,lambda,k,c_1,c_2,r,nb_t,T1,T2,T,0.01,800);

for i=1:nb_t

mfprintf(fd, ’%f %f %f %f %f\n’, (i-1)*dt, c(i), u(i), m(i), c(i)/m(i)^0.5);

end

mclose(fd);

function [m,u,c]=one_box_choc_tran(m0,lambda,k,c_min,c_max,r,nb_t,

T1,T2,T,dtheta,nb_theta)

dt = T/(nb_t-1);

m_inf = (k*c_min/lambda/(lambda+r))^(2/3);

u_inf = lambda * m_inf / k;

c = zeros(1,nb_t);

for t=1:nb_t

if (t-1)*dt<T1 then

c(t) = c_min;

elseif (t-1)*dt<(T1+T2)/2

c(t) = (((t-1)*dt - T1)*c_max

+ ((T1+T2)/2-(t-1)*dt)*c_min)/((T2-T1)/2);

elseif (t-1)*dt < T2

c(t) = (((t-1)*dt - (T1+T2)/2)*c_min

+ (T2-(t-1)*dt)*c_max)/((T2-T1)/2);

else

c(t) = c_min;

end

end

m = m0*ones(1,nb_t);

u = u_inf*ones(1,nb_t);
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new_m = zeros(1,nb_t);

new_u = zeros(1,nb_t);

for theta=2:nb_theta

integ = 0;

new_u(1,nb_t) = u_inf;

for t=nb_t-1:-1:1

integ = integ + dt * exp(-(lambda+r)*(t-1)*dt)*c(t)

* (1/sqrt(m(1,t)));

new_u(t) = dtheta*(exp(-(lambda+r)*(nb_t-t)*dt)*u_inf

+ exp((lambda+r)*(t-1)*dt)*integ) + (1 - dtheta)* u(1,t);

end

integ=0;

new_m(1,1) = m0;

for t=2:nb_t

integ = integ + dt * exp(lambda*(t-1)*dt) *k * u(1,t);

new_m(1,t) = dtheta*(exp(-lambda*(t-1)*dt)*m0

+ exp(-lambda*(t-1)*dt)*integ) + (1-dtheta)*m(1,t);

end

u=new_u;

m=new_m;

end

endfunction

Source code for the computations of I.5:

exec("calc_Phi_2.sci");

// solutions

lambda = 0.2;

k=0.2;

r=0.05;

eta=0.5;

alpha=0.2;

c_bar=1;

sigma=0.15;
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c_min=0.5;

c_max=1.5;

nb_c=31;

m_min=2;

m_max=3;

nb_m=31;

theta=150;

dtheta=1/50;

[Phi]=calc_Phi_2(lambda,k,r,eta,alpha,c_bar,sigma,c_min,c_max,nb_c,

m_min,m_max,nb_m,theta,dtheta);

c = linspace(c_min,c_max,nb_c);

m = linspace(m_min,m_max,nb_m);

fd = mopen(’Phi_2.dat’,’w’);

for i=1:nb_c

for j=1:nb_m

mfprintf(fd, ’%f %f %f\n’, c(i), m(j), Phi(i,j));

end

end

mclose(fd);

exec("vect_c_random.sci");

c0=1;

T=150;

nb_t=10000;

c_dyn=vect_c_random(alpha,c_bar,sigma,c0,T,nb_t,c_min,c_max);

exec("calc_m.sci");

m0 = 2.5;

m_dyn=calc_m(k,lambda,c_min,c_max,nb_c,m_min,m_max,nb_m, Phi,c_dyn, m0,T,nb_t);

dt = T /(nb_t-1);
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fd = mopen(’c_m.dat’,’w’);

for t=1:nb_t

mfprintf(fd, ’%f %f %f %f\n’, (t-1)*dt, c_dyn(t),

m_dyn(t), c_dyn(t)*m_dyn(t)^(-eta));

end

mclose(fd);

f=gcf();

xset("colormap",graycolormap(128))

plot3d1(c,m,Phi,220,10,"c@m@Phi",[0 2 4])

xs2eps(f,"Phi.eps")

clf();

for i=1:31

U(i,:)= 30*diff(Phi(i,:));

end

f=gcf();

xset("colormap",graycolormap(128))

plot3d1(c,m(1:30),U,220,30,"c@m@U",[0 2 4])

xs2eps(f,"U.eps")

function [Phi]=calc_Phi_2(lambda,k,r,eta,alpha,c_bar,sigma,c_min,c_max,nb_c,

m_min,m_max,nb_m,theta,dtheta)

dc = (c_max-c_min) / (nb_c-1);

dm = (m_max-m_min) / (nb_m-1);

nb_theta = floor(theta/dtheta) + 1;

grille = 50*ones(nb_c,nb_m);

grille_new = zeros(nb_c,nb_m);

c = linspace(c_min,c_max,nb_c);

m = linspace(m_min,m_max,nb_m);

A = zeros(nb_c,nb_c);

A(1,1)=1;

A(1,2)=-1;

A(nb_c,nb_c) = 1;
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A(nb_c,nb_c-1) = -1;

for l=2:nb_c-1

A(l,l-1) = -0.5;

A(l,l) = 1;

A(l,l+1) = -0.5;

end

A = sigma^2*dtheta/(dc)^2 * A + eye(nb_c,nb_c);

A = inv(A);

for k_theta=1:nb_theta

for j=1:nb_m

for i=1:nb_c

terme1 = -r*grille(i,j) + 1/(1-eta) * c(i) *m(j)^(1-eta);

if j==nb_m then

gradmplus = grille(i,j)-grille(i,j-1);

gradmmoins = grille(i,j)-grille(i,j-1);

elseif j==1 then

gradmplus = grille(i,j+1)-grille(i,j);

gradmmoins = grille(i,j+1)-grille(i,j);

else

gradmplus = grille(i,j+1)-grille(i,j);

gradmmoins = grille(i,j)-grille(i,j-1);

end

gradmplus = gradmplus / dm;

gradmmoins = gradmmoins / dm;

if k*gradmplus-lambda*m(j) >= 0 then

terme2 = -lambda*m(j)*gradmplus + k/2 * (gradmplus)^2;

elseif k*gradmmoins-lambda*m(j) <= 0

terme2 = -lambda*m(j)*gradmmoins + k/2 * (gradmmoins)^2;

else

terme2 = -(lambda*m(j))^2/2/k

end

if i==nb_c then

gradcplus = grille(i,j)-grille(i-1,j);

gradcmoins = grille(i,j)-grille(i-1,j);

elseif i==1 then
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gradcplus = grille(i+1,j)-grille(i,j);

gradcmoins = grille(i+1,j)-grille(i,j);

else

gradcplus = grille(i+1,j)-grille(i,j);

gradcmoins = grille(i,j)-grille(i-1,j);

end

gradcplus = gradcplus / dc;

gradcmoins = gradcmoins / dc;

if c(i) > c_bar then

terme3 = -alpha*(c(i)-c_bar)*gradcmoins;

else

terme3 = -alpha*(c(i)-c_bar)*gradcplus;

end

grille_new(i,j) = grille(i,j)

+ dtheta * (terme1 + terme2 + terme3);

end

end

for j=1:nb_m

grille(:,j) = A*grille_new(:,j);

end

end

Phi=grille;

endfunction

function c=vect_c_random(alpha,c_bar,sigma,c0,T,nb_t,c_min,c_max)

dt = T /(nb_t-1);

c = zeros(1,nb_t);

c(1,1) = c0;

dw = sqrt(dt)*rand(1,nb_t-1,"normal");

for i=1:nb_t-1

c(1,i+1) = c(1,i)-alpha*(c(1,i)-c_bar)*dt + sigma*dw(1,i);

if c(1,i+1) < c_min then

c(1,i+1) = 2*c_min - c(1,i+1);

elseif c(1,i+1) > c_max then

c(1,i+1) = 2*c_max - c(1,i+1);
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end

end

endfunction

function m_dyn=calc_m(k,lambda,c_min,c_max,nb_c,

m_min,m_max,nb_m, Phi,c_dyn, m0,T,nb_t)

dt = T /(nb_t-1);

m_dyn = zeros(1,nb_t);

m_dyn(1) = m0;

dc = (c_max-c_min) / (nb_c-1);

dm = (m_max-m_min) / (nb_m-1);

for t=1:nb_t-1

i = 1+floor((c_dyn(1,t)-c_min)/dc);

nu = (c_dyn(1,t)-c_min)/dc - floor((c_dyn(1,t)-c_min)/dc);

j = 1+floor((m_dyn(1,t)-m_min)/dm);

u_1 = (Phi(i,j+1)-Phi(i,j))/dm;

u_2 = (Phi(i+1,j+1)-Phi(i+1,j))/dm;

u = nu * u_2 + (1-nu)*u_1;

m_dyn(1,t+1) = m_dyn(1,t)*(1-lambda * dt)+k*u*dt;

end

endfunction

Source code for the computation of a solution with excursions to high prices of I.6:

function [Phi]=calc_Phi_dem41(lambda,k,r,alpha,c_bar,sigma,c_min,c_max,nb_c,

m_min,m_max,nb_m,theta,dtheta)

dc = (c_max-c_min) / (nb_c-1);

dm = (m_max-m_min) / (nb_m-1);

nb_theta = floor(theta/dtheta) + 1;

grille = zeros(nb_c,nb_m);

c = linspace(c_min,c_max,nb_c);

m = linspace(m_min,m_max,nb_m);

A = zeros(nb_c,nb_c);

A(1,1)=0.5;
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A(1,2)=-0.5;

A(nb_c,nb_c) = 0.5;

A(nb_c,nb_c-1) = -0.5;

for l=2:nb_c-1

A(l,l-1) = -0.5;

A(l,l) = 1;

A(l,l+1) = -0.5;

end

A = sigma^2*dtheta/(dc)^2 * A + eye(nb_c,nb_c);

A = inv(A);

xi=2;

for k_theta=1:nb_theta

for j=1:nb_m

for i=1:nb_c

if m(j)< xi*c(i) then

picm = 1*m(j);

else

picm = 1*xi*c(i) + 0.5*(m(j)-xi*c(i));

end

terme1 = -r*grille(i,j) + picm;

if j==nb_m then

gradmplus = grille(i,j)-grille(i,j-1);

gradmmoins = grille(i,j)-grille(i,j-1);

elseif j==1 then

gradmplus = grille(i,j+1)-grille(i,j);

gradmmoins = grille(i,j+1)-grille(i,j);

else

gradmplus = grille(i,j+1)-grille(i,j);

gradmmoins = grille(i,j)-grille(i,j-1);

end

gradmplus = gradmplus / dm;

gradmmoins = gradmmoins / dm;

terme2 = -lambda*m(j)*gradmmoins + k/2 * (gradmplus)^2;

if i==nb_c then

gradcplus = grille(i,j)-grille(i-1,j);

gradcmoins = grille(i,j)-grille(i-1,j);
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elseif i==1 then

gradcplus = grille(i+1,j)-grille(i,j);

gradcmoins = grille(i+1,j)-grille(i,j);

else

gradcplus = grille(i+1,j)-grille(i,j);

gradcmoins = grille(i,j)-grille(i-1,j);

end

gradcplus = gradcplus / dc;

gradcmoins = gradcmoins / dc;

if c(i) > c_bar then

terme3 = -alpha*(c(i)-c_bar)*gradcmoins;

else

terme3 = -alpha*(c(i)-c_bar)*gradcplus;

end

grille(i,j) = grille(i,j)

+ dtheta * (terme1 + terme2 + terme3);

end

grille(:,j) = A*grille(:,j);

end

end

Phi=grille;

endfunction

Source code for the computation of a solution to the model described in III.1:

exec("calc_Phi_1_box.sci");

exec("build_1_box.sci");

// solutions

k=12;

r=0.25;

eta=0.5;

alpha=0.2;

c_bar=1;

sigma=0.15;
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c_min=0.5;

c_max=1.5;

nb_c=21;

m_min=1.5;

m_max=2.5;

nb_m=31;

theta=30;

dtheta=1/60;

[Phi]=calc_Phi_1_box(k,r,eta,alpha,c_bar,sigma,c_min,c_max,nb_c,

m_min,m_max,nb_m,theta,dtheta)

c = linspace(c_min,c_max,nb_c);

m = linspace(m_min,m_max,nb_m);

exec("vect_c_random.sci");

c0=1;

T=150;

nb_t=10000;

c_dyn=vect_c_random(alpha,c_bar,sigma,c0,T,nb_t,c_min,c_max);

exec("calc_m_1_box.sci");

m0 = 2;

m_dyn=calc_m_1_box(k,c_min,c_max,nb_c,m_min,m_max,nb_m, Phi,c_dyn, m0,T,nb_t);

dt = T /(nb_t-1);

fd = mopen(’c_m_1_box.dat’,’w’);

for t=1:nb_t

mfprintf(fd, ’%f %f %f %f\n’, (t-1)*dt, c_dyn(t), m_dyn(t),

c_dyn(t)*m_dyn(t)^(-eta));

end

mclose(fd);

f=gcf();

xset("colormap",graycolormap(128))

plot3d1(c,m,Phi,220,10,"c@m@Phi",[0 2 4])

xs2eps(f,"Phi_1_box.eps")
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clf();

for i=1:21

U(i,:)= 30*diff(Phi(i,:));

end

f=gcf();

xset("colormap",graycolormap(128))

plot3d1(c,m(1:30),U,220,40,"c@m@U",[0 2 4])

xs2eps(f,"U_1_box.eps")

function [Phi]=calc_Phi_1_box(k,r,eta,alpha,c_bar,sigma,c_min,c_max,nb_c,

m_min,m_max,nb_m,theta,dtheta)

dc = (c_max-c_min) / (nb_c-1);

dm = (m_max-m_min) / (nb_m-1);

nb_theta = floor(theta/dtheta) + 1;

[u1,m1,lamda,phi_ref]=build_1_box(k,r,eta);

grille = zeros(nb_c,nb_m);

grille_new = zeros(nb_c,nb_m);

mid_m = (nb_m+1)/2;

for i =1:nb_m

for c=1:nb_c

grille(c,i) = phi_ref + (i-mid_m)*u1*dm;

end

end

c = linspace(c_min,c_max,nb_c);

m = linspace(m_min,m_max,nb_m);

A = zeros(nb_c,nb_c);

A(1,1)=1;

A(1,2)=-1;

A(nb_c,nb_c) = 1;

A(nb_c,nb_c-1) = -1;

for l=2:nb_c-1

A(l,l-1) = -0.5;

A(l,l) = 1;
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A(l,l+1) = -0.5;

end

A = sigma^2*dtheta/(dc)^2 * A + eye(nb_c,nb_c);

A = inv(A);

for k_theta=1:nb_theta

printf("%d\n",k_theta);

for j=1:nb_m

for i=1:nb_c

terme1 = -r*grille(i,j) + 1/(1-eta) * c(i) *m(j)^(1-eta);

if j==nb_m then

gradmplus = grille(i,j)-grille(i,j-1);

gradmmoins = grille(i,j)-grille(i,j-1);

elseif j==1 then

gradmplus = grille(i,j+1)-grille(i,j);

gradmmoins = grille(i,j+1)-grille(i,j);

else

gradmplus = grille(i,j+1)-grille(i,j);

gradmmoins = grille(i,j)-grille(i,j-1);

end

gradmplus = max(gradmplus/dm,0.0001);

gradmmoins = max(gradmmoins/dm,0.001);

lambdaplus = (k*gradmplus)^(-1/3);

lambdamoins = (k*gradmmoins)^(-1/3);

if (1-lambdaplus*m(j)) > 0 then

terme2 = gradmplus - m(j) * 3/2 * k^(-1/3)*gradmplus^(2/3);

elseif (1-lambdamoins*m(j)) < 0

terme2 = gradmmoins - m(j) * 3/2 * k^(-1/3)*gradmmoins^(2/3);

else

gradm = m(j)^3/k;

terme2 = gradm - m(j) * 3/2 * k^(-1/3)*gradm^(2/3);

end

if i==nb_c then

gradcplus = grille(i,j)-grille(i-1,j);

gradcmoins = grille(i,j)-grille(i-1,j);

elseif i==1 then

gradcplus = grille(i+1,j)-grille(i,j);
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gradcmoins = grille(i+1,j)-grille(i,j);

else

gradcplus = grille(i+1,j)-grille(i,j);

gradcmoins = grille(i,j)-grille(i-1,j);

end

gradcplus = gradcplus / dc;

gradcmoins = gradcmoins / dc;

if c(i) > c_bar then

terme3 = -alpha*(c(i)-c_bar)*gradcmoins;

else

terme3 = -alpha*(c(i)-c_bar)*gradcplus;

end

grille_new(i,j) = grille(i,j)

+ dtheta * (terme1 + terme2 + terme3);

end

end

for j=1:nb_m

grille(:,j) = A*grille_new(:,j);

end

end

Phi=grille;

endfunction

function m1_dyn=calc_m_2_box(k1,k2,c_min,c_max,nb_c,

m_min,m_max,nb_m, Phi,c_dyn, m1_0,m2_0,T,nb_t)

dt = T /(nb_t-1);

m_dyn = zeros(1,nb_t);

m_dyn(1) = m0;

dc = (c_max-c_min) / (nb_c-1);

dm = (m_max-m_min) / (nb_m-1);

for t=1:nb_t-1

i = 1+floor((c_dyn(1,t)-c_min)/dc);

nu = (c_dyn(1,t)-c_min)/dc - floor((c_dyn(1,t)-c_min)/dc);

j = 1+floor((m_dyn(1,t)-m_min)/dm);

u_1 = (Phi(i,j+1)-Phi(i,j))/dm;
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u_2 = (Phi(i+1,j+1)-Phi(i+1,j))/dm;

u = nu * u_2 + (1-nu)*u_1;

lambda = (k*u)^(-1/3)

m_dyn(1,t+1) = m_dyn(1,t)*(1-lambda * dt)+dt;

end

endfunction

function [u1,m1,lamda,Phi]=build_1_box(k,r,eta)

u1=5;

err=10;

for j=1:20

fu1 = r*u1+(3/2)*k^(-1/3)*u1^(2/3)-k^(-eta/3)*u1^(-eta/3);

fpu1 = r+ k^(-1/3)*u1^(-1/3)+ eta/3 * k^(-eta/3)*u1^(-eta/3-1);

u1 = max(0.0001,u1 - fu1/fpu1);

end

m1 = (k*u1)^(1/3);

lamda = (k*u1)^(-1/3);

Phi = (m1^(1-eta)/(1-eta) - 1/(2*k*lamda^2))/r;

endfunction

Source code for the computation of a solution to the model described in III.2:

exec("calc_Phi_2_box.sci");

exec("build_2_box.sci")

// solutions

k1=1.4;

k2=12;

r=0.25;

eta=0.5;

alpha=0.2;

c_bar=1;

sigma=0.15;

c_min=0.5;

c_max=1.5;
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nb_c=11;

m1_min=0.2;

m1_max=3;

nb_m1=29;

m2_min=0.2;

m2_max=4;

nb_m2=39;

theta=30;

dtheta=1/100;

[Phi,gc1,gc2]=calc_Phi_2_box(k1,k2,r,eta,alpha,c_bar,sigma,c_min,c_max,nb_c,

m1_min,m1_max,nb_m1,m2_min,m2_max,nb_m2,theta,dtheta);

c = linspace(c_min,c_max,nb_c);

m1 = linspace(m1_min,m1_max,nb_m1);

m2 = linspace(m2_min,m2_max,nb_m2);

exec("vect_c_random.sci");

c0=1;

T=150;

nb_t=10000;

c_dyn=vect_c_random(alpha,c_bar,sigma,c0,T,nb_t,c_min,c_max);

exec("calc_m_2_box.sci");

m1_0 = 2;

m2_0 = 2;

[m1_dyn,m2_dyn]=calc_m_2_box(k1,k2,c_min,c_max,nb_c,m1_min,m1_max,nb_m1,

m2_min,m2_max,nb_m2,Phi,c_dyn, m1_0,m2_0,T,nb_t);

dt = T /(nb_t-1);

fd = mopen(’c_m_2_box.dat’,’w’);

for t=1:nb_t

mfprintf(fd, ’%f %f %f %f %f\n’, (t-1)*dt, c_dyn(t), m1_dyn(t),

m2_dyn(t), c_dyn(t)*m2_dyn(t)^(-eta));

end

mclose(fd);
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f=gcf();

xset("colormap",graycolormap(128))

plot3d1(m1,m2,squeeze(Phi(6,:,:)),220,40,"m1@m2@Phi(c=1)",[0 2 4])

xs2eps(f,"Phi_2_box_c1.eps")

clf();

for j=1:29

for k =1:38

U2(j,k)= 10*(Phi(6,j,k+1)-Phi(6,j,k));

end

end

for k=1:39

for j=1:28

U1(j,k)= 10*(Phi(6,j+1,k) - Phi(6,j,k));

end

end

f=gcf();

xset("colormap",graycolormap(128))

plot3d1(m1(1:28),m2,U1,220,60,"m1@m2@U1(c=1)",[0 2 4])

xs2eps(f,"U1_2_box.eps")

clf();

f=gcf();

xset("colormap",graycolormap(128))

plot3d1(m1,m2(1:38),U2,220,60,"m1@m2@U2(c=1)",[0 2 4])

xs2eps(f,"U2_2_box.eps")

clf();

function [Phi,grilles_codes,grilles_codes_2]=calc_Phi_2_box(k1,k2,r,eta,alpha,

c_bar,sigma,c_min,c_max,nb_c,m1_min,m1_max,nb_m1,

m2_min,m2_max,nb_m2,theta,dtheta)

dc = (c_max-c_min) / (nb_c-1);

dm1 = (m1_max-m1_min) / (nb_m1-1);

dm2 = (m2_max-m2_min) / (nb_m2-1);
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nb_theta = floor(theta/dtheta)+1;

[u1,u2,m1,m2,delta1,lamda,phi_ref]=build_2_box(k1,k2,r,eta);

grille = zeros(nb_c,nb_m1,nb_m2);

grille_new = zeros(nb_c,nb_m1,nb_m2);

mid_m1 = (nb_m1+1)/2;

mid_m2 = (nb_m2+1)/2;

for i =1:nb_m1

for j=1:nb_m2

for c=1:nb_c

grille(c,i,j) = phi_ref + (i-mid_m1)*u1*dm1 + (j-mid_m2)*u2*dm2;

end

end

end

grilles_codes = zeros(nb_m1,nb_m2);

grilles_codes_2 = zeros(nb_m1,nb_m2);

c = linspace(c_min,c_max,nb_c);

m1 = linspace(m1_min,m1_max,nb_m1);

m2 = linspace(m2_min,m2_max,nb_m2);

A = zeros(nb_c,nb_c);

A(1,1)=1;

A(1,2)=-1;

A(nb_c,nb_c) = 1;

A(nb_c,nb_c-1) = -1;

for l=2:nb_c-1

A(l,l-1) = -0.5;

A(l,l) = 1;

A(l,l+1) = -0.5;

end

A = sigma^2*dtheta/(dc)^2 * A + eye(nb_c,nb_c);

A = inv(A);

for k_theta=1:nb_theta

printf("%d\n",k_theta);
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printf("%f %f %f %f\n", grilles_codes(1,1),grilles_codes(1,nb_m2),

grilles_codes(nb_m1,1),grilles_codes(nb_m1,nb_m2));

for k=1:nb_m2

for j=1:nb_m1

for i=1:nb_c

terme1 = -r*grille(i,j,k) + 1/(1-eta) * c(i) *m2(k)^(1-eta);

if j==nb_m1 then

gradm1plus = 2*(grille(i,j,k)-grille(i,j-1,k))

-(grille(i,j-1,k)-grille(i,j-2,k));

gradm1moins = grille(i,j,k)-grille(i,j-1,k);

elseif j==1 then

gradm1plus = grille(i,j+1,k)-grille(i,j,k);

gradm1moins = 2*(grille(i,j+1,k)-grille(i,j,k))

-(grille(i,j+2,k)-grille(i,j+1,k));

else

gradm1plus = grille(i,j+1,k)-grille(i,j,k);

gradm1moins = grille(i,j,k)-grille(i,j-1,k);

end

gradm1plus = gradm1plus / dm1;

gradm1moins = gradm1moins / dm1;

if k==nb_m2 then

gradm2plus = 2*(grille(i,j,k)-grille(i,j,k-1))

-(grille(i,j,k-1)-grille(i,j,k-2));

gradm2moins = grille(i,j,k)-grille(i,j,k-1);

elseif k==1 then

gradm2plus = grille(i,j,k+1)-grille(i,j,k);

gradm2moins = 2*(grille(i,j,k+1)-grille(i,j,k))

-(grille(i,j,k+2)-grille(i,j,k+1));;

else

gradm2plus = grille(i,j,k+1)-grille(i,j,k);

gradm2moins = grille(i,j,k)-grille(i,j,k-1);

end

gradm2plus = gradm2plus / dm2;

gradm2moins = gradm2moins / dm2;

deltaplusplus = k1*(gradm2plus-gradm1plus);
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deltaplusmoins = k1*(gradm2moins-gradm1plus);

deltamoinsmoins = k1*(gradm2moins-gradm1moins);

deltamoinsplus = k1*(gradm2plus-gradm1moins);

lambdaplus = (max(k2*gradm2plus,0.0001))^(-1/3);

lambdamoins = (max(k2*gradm2moins,0.0001))^(-1/3);

m1dotplusplus = 1 - deltaplusplus * m1(j);

m2dotplusplus = deltaplusplus * m1(j) - lambdaplus * m2(k);

if i==11 then

grilles_codes_2(j,k) = deltaplusplus ;

end

m1dotplusmoins = 1 - deltaplusmoins * m1(j);

m2dotplusmoins = deltaplusmoins * m1(j)

- lambdamoins * m2(k);

m1dotmoinsplus = 1 - deltamoinsplus * m1(j);

m2dotmoinsplus = deltamoinsplus * m1(j)

- lambdaplus * m2(k);

m1dotmoinsmoins = 1 - deltamoinsmoins * m1(j);

m2dotmoinsmoins = deltamoinsmoins * m1(j)

- lambdamoins * m2(k);

if (m1dotplusplus > 0) & (m2dotplusplus > 0) then

if i==11 then

grilles_codes(j,k) = 0;

end

terme2 = gradm1plus + k1*m1(j)/2

* (gradm2plus-gradm1plus)^2

- 3/2*m2(k)* k2^(-1/3)*max(gradm2plus,0)^(2/3);

elseif (m1dotplusmoins > 0) & (m2dotplusmoins < 0) then

if i==11 then

grilles_codes(j,k) = 1;

end

terme2 = gradm1plus + k1*m1(j)/2

* (gradm2moins-gradm1plus)^2

- 3/2*m2(k)* k2^(-1/3)*max(gradm2moins,0)^(2/3);
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elseif (m1dotmoinsplus < 0) & (m2dotmoinsplus > 0) then

if i==11 then

grilles_codes(j,k) = 2;

end

terme2 = gradm1moins + k1*m1(j)/2

* (gradm2plus-gradm1moins)^2

- 3/2*m2(k)* k2^(-1/3)*max(gradm2plus,0)^(2/3);

elseif (m1dotmoinsmoins < 0) & (m2dotmoinsmoins < 0) then

if i==11 then

grilles_codes(j,k) = 3;

end

terme2 = gradm1moins + k1*m1(j)/2

* (gradm2moins-gradm1moins)^2

- 3/2*m2(k)* k2^(-1/3)*max(gradm2moins,0)^(2/3);

else // on est près d’un cas d’égalité

m1dotpos = (m1dotplusplus > 0) & (m1dotplusmoins > 0)

& (m1dotmoinsplus > 0) & (m1dotmoinsmoins > 0);

m1dotneg = (m1dotplusplus < 0) & (m1dotplusmoins < 0)

& (m1dotmoinsplus < 0) & (m1dotmoinsmoins < 0);

m2dotpos = (m2dotplusplus > 0) & (m2dotplusmoins > 0)

& (m2dotmoinsplus > 0) & (m2dotmoinsmoins > 0);

m2dotneg = (m2dotplusplus < 0) & (m2dotplusmoins < 0)

& (m2dotmoinsplus < 0) & (m2dotmoinsmoins < 0);

if m1dotpos then

if m2dotpos | m2dotneg then

printf("Erreur %d %d %d\n",i,j,k)

else // on décentre pour le 2...

if i==11 then

grilles_codes(j,k) = 0;

end

terme2 = gradm1plus + k1*m1(j)/2

* (gradm2plus-gradm1plus)^2

- 3/2*m2(k)* k2^(-1/3)*max(gradm2plus,0)^(2/3);

end

elseif m1dotneg then

if m2dotpos | m2dotneg then
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printf("Erreur %d %d %d\n",i,j,k)

else // on décentre pour le 2...

if i==11 then

grilles_codes(j,k) = 2;

end

terme2 = gradm1moins + k1*m1(j)/2

* (gradm2plus-gradm1moins)^2

- 3/2*m2(k)* k2^(-1/3)*max(gradm2plus,0)^(2/3);

end

else

if m2dotpos then

if i==11 then

grilles_codes(j,k) = 0;

end

terme2 = gradm1plus + k1*m1(j)/2

* (gradm2plus-gradm1plus)^2

- 3/2*m2(k)* k2^(-1/3)*max(gradm2plus,0)^(2/3);

elseif m2dotneg then

if i==11 then

grilles_codes(j,k) = 1;

end

terme2 = gradm1plus + k1*m1(j)/2

* (gradm2moins-gradm1plus)^2

- 3/2*m2(k)* k2^(-1/3)*max(gradm2moins,0)^(2/3);

else

if i==11 then

grilles_codes(j,k) = -1;

end

gradm2 = m2(k)^3/k2;

gradm1 = gradm2 - 1/(k1*m1(j));

terme2 = gradm1 + k1*m1(j)/2

* (gradm2-gradm1)^2

- 3/2*m2(k)* k2^(-1/3)*max(gradm2,0)^(2/3);

end

end

end
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if i==nb_c then

gradcplus = grille(i,j,k)-grille(i-1,j,k);

gradcmoins = grille(i,j,k)-grille(i-1,j,k);

elseif i==1 then

gradcplus = grille(i+1,j,k)-grille(i,j,k);

gradcmoins = grille(i+1,j,k)-grille(i,j,k);

else

gradcplus = grille(i+1,j,k)-grille(i,j,k);

gradcmoins = grille(i,j,k)-grille(i-1,j,k);

end

gradcplus = gradcplus / dc;

gradcmoins = gradcmoins / dc;

if c(i) > c_bar then

terme3 = -alpha*(c(i)-c_bar)*gradcmoins;

else

terme3 = -alpha*(c(i)-c_bar)*gradcplus;

end

grille_new(i,j,k) = grille(i,j,k)

+ dtheta * (terme1 + terme2 + terme3);

end

end

end

for k=1:nb_m2

for j=1:nb_m1

grille(:,j,k) = A*grille_new(:,j,k);

end

end

end

Phi=grille;

endfunction

function [m1_dyn,m2_dyn]=calc_m_2_box(k1,k2,c_min,c_max,nb_c,

m1_min,m1_max,nb_m1,m2_min,m2_max,nb_m2,Phi,c_dyn, m1_0,m2_0,T,nb_t)

dt = T /(nb_t-1);

m1_dyn = zeros(1,nb_t);
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m1_dyn(1) = m1_0;

m2_dyn = zeros(1,nb_t);

m2_dyn(1) = m2_0;

dc = (c_max-c_min) / (nb_c-1);

dm1 = (m1_max-m1_min) / (nb_m1-1);

dm2 = (m2_max-m2_min) / (nb_m2-1);

for t=1:nb_t-1

i = 1+floor((c_dyn(1,t)-c_min)/dc);

nu = (c_dyn(1,t)-c_min)/dc - floor((c_dyn(1,t)-c_min)/dc);

j = 1+floor((m1_dyn(1,t)-m1_min)/dm1);

u1_1 = (Phi(i,j+1,k)-Phi(i,j,k))/dm1;

u1_2 = (Phi(i+1,j+1,k)-Phi(i+1,j,k))/dm1;

u1 = nu * u1_2 + (1-nu)*u1_1;

k = 1+floor((m2_dyn(1,t)-m2_min)/dm2);

u2_1 = (Phi(i,j,k+1)-Phi(i,j,k))/dm2;

u2_2 = (Phi(i+1,j,k+1)-Phi(i+1,j,k))/dm2;

u2 = nu * u2_2 + (1-nu)*u2_1;

lambda = (k2*u2)^(-1/3);

delta = k1*(u2-u1);

m1_dyn(1,t+1) = m1_dyn(1,t)*(1-delta * dt)+dt;

m2_dyn(1,t+1) = m2_dyn(1,t)*(1-lambda * dt)+delta*m1_dyn(1,t)*dt;

end

endfunction

function [u1,u2,m1,m2,delta1,lamda,Phi]=build_2_box(k1,k2,r,eta)

u2=5;

err=10;

for i=1:20

fu2 = r*u2+(3/2)*k2^(-1/3)*u2^(2/3)-k2^(-eta/3)*u2^(-eta/3);

fpu2 = r+ k2^(-1/3)*u2^(-1/3)+ eta/3 * k2^(-eta/3)*u2^(-eta/3-1);

u2 = max(0.0001,u2 - fu2/fpu2);

end

m2 = (k2*u2)^(1/3);

u1 = u2 - (-r+sqrt(r^2+2*r*k1*u2))/k1;

m1 = 1/k1/(u2-u1);
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delta1 = k1*(u2-u1);

lamda = (k2*u2)^(-1/3);

Phi = (m2^(1-eta)/(1-eta) - delta1^2/2/k1 - 1/(2*k2*lamda^2))/r;

endfunction
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