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Synthése

Avant-propos

Nous avons le plaisir de remettre notre rapport de fin de projet de recherche pour le projet « Finance
Carbone ». Le projet a permis a ce jour la réalisation de 5 papiers de recherche dont 4 ont été publiés
dans des revues a comité de lecture classées A (3/4) ou B (1/4) par le CNRS. Le 5éme papier est
actuellement en soumission dans une revue de catégorie identique. L’'ensemble de ces contributions
a permis de traiter les sujets qui ont été proposés au CFE lors de la remise du projet.

A ce jour, les fonds obtenus grace au CFE ont permis :

1. Des déplacements multiples afin de permettre aux chercheurs de se rencontrer et de
travailler ensemble.

2. Des présentations a des séminaires invités et a des colloques nationaux et internationaux.
L'achat de données, de petits matériels informatiques et de logiciels dédiés au projet.

Les présentations a des colloques, tout particulierement, ont permis de donner une meilleure
visibilité a nos travaux et, a notre sens, ont mis en valeur le soutien financier du CFE. De plus, les
présentations ayant eu lieu lors de colloques portant sur des champs différents de I'économie
(économie de I'énergie, économie générale, finance), la reconnaissance du CFE en tant que financeur
de la recherche en économie de I'énergie n’en est que plus large. Précisons que lors de chaque
communication le soutien financier du CFE a été mentionné.

Dans la suite de ce document de synthese, nous présentons d’une maniére briévement la
contribution de chaque papier. Le CFE pourra trouver ensuite un long résumé (en frangais) pour
chaque article ainsi que la derniére version du document de travail (avant publication) en version
originale (anglais).

Syntheése des contributions académiques

Nous présentons a présent les principaux résultats de notre travail dont les résumés longs en francais
suivent.

Les trois premiers articles s’intéressent a 'analyse de I'efficience du marché européen du carbone.
C’est le premier point qui avait été proposé dans notre projet initial.

Dans «Testing the martingale difference hypothesis in CO2 emission allowances » par Amélie
Charles et alii, nous montrons que le marché du carbone est efficient au sens faible (pas
d’information dans les cours passés exploitable pour la prévision des cours futurs) lors de la phase Il.
Des résultats sont également fournis pour la phase | qui ne présentait pas une efficience au sens
faible sur I’ensemble de sa durée. Il semble donc que I'efficience du marché soit progressivement
apparue, peut-étre a la suite d’'un phénomene d’apprentissage des agents économiques opérant sur
ce marché. Cela est de bon augure pour la phase Il a venir.



Dans « Testing the speculative efficiency hypothesis on CO2 emission allowance prices: Evidence
from Bluenext » par Amélie Charles et alii, nous nous sommes intéressés a une autre dimension de
I’efficience, en particulier I'absence d’arbitrage entre marché spot et marché a terme. Par le biais de
tests de cointégration entre ces deux séries, il apparait que les deux marchés ne sont pas reliés a long
terme ce qui met en lumiére une inefficience spéculative du marché du carbone.

Dans « EUA and sCER Phase Il Price Drivers: Unveiling the reasons for the existence of the EUA-
sCER spread » par Julien Chevalier et alii, nous élargissons la notion d’efficience évoquée dans les
deux premiers papiers en considérant la relation entre le marché européen (EUA) et le marché
mondial du carbone (CER). Nous montrons que la relation d’arbitrage est en fait imparfaite en raison
de limitations sur le type d’acteurs pouvant exercer cette opération et le seuil maximal
d’intervention pour ces opérateurs.

Le quatrieme article s’intéresse a la question de I'impact de I'introduction du marché d’options sur le
marché sous-jacent du carbone. Il s’agit du deuxieme sujet proposé dans le projet.

Dans notre article « Option introduction and volatility in the EU ETS » par Julien Chevallier et alii,
nous proposons une analyse économétrique compléte de la période autour de la date d’introduction
du marché option (en tenant compte également des volumes échangés qui seront de plus en plus
importants). Il semble que la mise en place d’'un marché option n’ait pas eu d’effet déstabilisateur
sur le marché original du carbone. Ce résultat est robuste a I'introduction d’un ensemble de variables
de contréle. D’autre part, il semble que les options permettent une amélioration de I'efficience
informationnelle du marché en réduisant la persistance de la volatilité.

Enfin, le cinquieme article propose une modélisation de la volatilité des prix du carbone, en utilisant
les données intra-journalieres disponibles pour ce marché. Cest le troisieme point du projet
scientifique proposé.

L'article « On the realized volatility of the ECX CO2 emissions 2008 futures contract: distribution,
dynamics and forecasting » par Julien Chevalier et Benoit Sévi suggere une modélisation
autorégressive de la volatilité réalisée sur I'EU ETS qui capte de maniere satisfaisante I’'ensemble des
faits stylisés relevés (mémoire longue de la volatilité réalisée notamment). De plus, nous montrons
que la distribution inconditionnelle des rendements standardisés est quasiment normale ce qui
valide I'hypothese avancée en finance de mélange des lois normales. Nous montrons également, a
titre d’illustration, que le modeéle a des performances trés supérieures au modele GARCH standard.



Testing the martingale difference hypothesis in CO2 emission
allowances

Auteurs : Amélie Charles, Olivier Darné et Jessica Fouilloux
Publication : Economic Modelling, 28, 27-35 (2011)

Colloques : Association Francaise de Finance (AFFI), Brest, 2010; Association Francgaise de
Science Economique (AFSE), Nanterre, 2010.

Le systeme communautaire d’échange de quotas d’émission (SCEQE) ou European
Union Emission Trading System (EU ETS), créé en 2005, est un mécanisme de I'Union
Européenne visant a réduire I'’émission globale des gaz a effets de serre, en particulier le
CO2, et a atteindre les objectifs de I’'Union Européenne dans le cadre du protocole de Kyoto.
C'est le plus grand systéeme d'échange de crédits d’émissions de gaz a effet de serre dans le
monde. Afin d’améliorer la fluidité du EU ETS, des marchés de négociation et d'échange de
droits d'émission de gaz a effet de serre ont été créés, notamment les marchés Bluenext en
France, ECX a Londres et Amsterdam, EEX en Allemagne, SendeCO2 en Espagne, EXAA en
Autriche et Nord Pool en Norvege.

Une question importante est de savoir si les mécanismes mis en place par I'EU ETS
ont permis au marché d’opérer de maniere efficiente d’'un point de vue informationnel. En
d’autres mots, est-ce que les prix d’échanges de droits d’émission refletent toute
I'information disponible telle qu’il ne soit pas possible pour un investisseur de réaliser un
arbitrage ? L'étude de cette question est cruciale car I'objectif du EU ETS est de permettre
aux pays participants d’assurer le respect de l'environnement d'une maniére rentable et
économiquement optimale, qui tous deux exigent implicitement que le marché lui-méme
soit efficient. L'efficience du marché du CO2 est particulierement importante pour les
entreprises d'émission, les gestionnaires de risque et les investisseurs dans la nouvelle classe
des fonds de pension dans I'énergie et de carbone. L'efficience du marché du carbone est
destinée a permettre aux entreprises de réaliser leurs réductions d'émissions au moindre
co(t. Une implication politique de l'inefficacité des marchés est un plus grand besoin de
réglement visant a améliorer les flux d'information et de réduire les manipulations de
marché.

L'hypothese de marché efficient (efficient market hypothesis ou EMH), et plus
précisément I'hypothése de marché informationnel au sens faible, stipule que les
informations contenues dans les prix passés sont immédiatement, pleinement et sans cesse
reflétées dans le prix actuel de l'actif. Cela implique que les prix suivent une marche
aléatoire ou une martingale. En conséquence, les variations de prix futurs basées sur des
informations passées des prix sont imprévisibles et fluctuent seulement en réponse au flux



aléatoire de nouvelles informations. En outre, étant donné que |'ajustement des prix a un
nouvel élément d'information est instantané et précis, les rentabilités ne peuvent étre
prédites. Cela signifie que les variations de prix historiques ne peuvent pas étre utilisées
pour former des prévisions supérieures ou de réaliser des bénéfices au-dessus du niveau
justifié par le risque supposé. La plupart des études sur 'EMH des marchés financiers teste
I'efficience au sens faible au travers de I'hypothése de différence de martingale (martingale
difference hypothesis ou MDH) ou le prix actuel est le meilleur prédicteur du prix futur des
prix et les rendements sont indépendants (ou ne sont pas corrélés avec) les valeurs du passé.
Si le marché des émissions de CO2 est efficient au sens faible, alors les changements dans les
prix spot du CO2 suivent une séquence de différence de martingale (martingale difference
sequence ou MDS), et les variations de prix sont imprévisibles. Cela signifie qu'il est
impossible pour un opérateur d'obtenir un rendement excédentaire au fil du temps grace a
la spéculation. Si le marché n'est pas efficient au sens faible, alors les variations de prix sont
prévisibles. Ainsi, les traders peuvent générer des rendements anormaux par la spéculation.
Pour ces raisons, la prévisibilité des rendements est un enjeu important dans |'efficacité du
marché du carbone.

Dans cet article, nous étudions I'EMH au sens faible sur les marchés EU ETS de quotas
d'émission de carbone, en utilisant les prix au comptant (prix spot) négociés sur BlueNext
(France), European Energy Exchange (EEX, Allemagne) et Nordic Power Exchange (Nord Pool,
Norvege), au cours de la Phase | et de la Phase Il, ainsi que les prix a terme négociés sur
BlueNext et ECX au cours de la Phase Il (données quotidiennes et hebdomadaires). La non
prévisibilité des changements de prix spot et a terme du CO2, qui est une implication de
I'efficience de marché au sens faible, est évaluée en utilisant deux tests économétriques : (1)
le test de bootstrap du rapport des variances automatique. Ce test de ratio de variances est
robuste a I’"hétéroscédasticité et a la non-normalité qui sont présents dans les prix de quotas
d'émission de CO2 et possedent des propriétés souhaitables en petits échantillons. (2) Le
test spectral généralisé qui permet de capturer la présence possible de non linéarité.

Pour la Phase |, les résultats montrent que les variations de prix spot des trois
marchés sont prévisibles, ce qui suggére la possibilité d’arbitrage, sauf pendant la sous-
période allant d’avril 2006 a octobre 2006, a savoir apres la divulgation (avril 2006) des
premieres informations fiables sur les émissions réelles de I'année 2005 révélant que la
plupart des installations disposaient d'excédents de quotas — qui a été accompagné par un
effondrement soudain des prix d’allocation — et avant I'annonce (octobre 2006) par la
Communauté Européenne de la validation du Plan National d’Allocation des Quotas (PNAQ)
Il plus stricte — qui a renforcé I'effet dépressif sur les prix. Nous mettons aussi en évidence
gue la divulgation en avril 2006 d’information sur les émissions de I’'année 2005 ne semble
pas avoir influencé la prévisibilité des changements de prix. Enfin, nous montrons que les
changements des prix spot et a terme ne sont pas prévisibles au cours de la Phase I, car
nous n'avons pas réussi a rejeter la MDH basée sur des données quotidiennes et
hebdomadaires. Ces marchés sont donc efficients au sens faible.



Testing the speculative efficiency hypothesis on CO2 emission
allowance prices: Evidence from Bluenext

Auteurs : Amélie Charles, Olivier Darné et Jessica Fouilloux
Publication : Document de travail du LEMNA (2011) — étude préliminaire

Colloques : Association Francaise de Finance (AFFI), Montpellier, 2011.

En janvier 2005, le systeme communautaire d’échange de quotas d’émission (SCEQE)
ou European Union Emission Trading System (EU ETS) est entré en vigueur. L'EU ETS est une
des plus importantes initiatives prises pour réduire les gaz a effet de serre (principalement
CO2) causés par le changement climatique (protocole de Kyoto). L'EU ETS inclut environ 11
500 installations participantes a travers vingt-sept Etats membres. En 2010, il prend en
compte 45% des émissions CO2 en Europe.

L'EU ETS présente un systeme de « cap and trade », qui fonctionne par la création et
I'allocation de quotas aux installations. Puisque les quotas sont limités, ils sont échangés sur
des marchés et leur prix dépendent de |'offre et de la demande. La distribution de ces droits
est gratuite. Le plan fonctionne au cours de périodes discrétes, avec une premiere période
test de 2005 a 2007 (la Phase I) et une deuxieme période correspondant a la premiére
période d'engagement du Protocole de Kyoto. Cette période s'étendra de 2008 a 2012 (la
Phase Il) et sera suivie par une troisieme période de 2013 a 2020 (la Phase Ill). L'objectif de
I'Union Européenne est de réduire de 8% les émissions par rapport au niveau d’émission de
1990 et ce durant la période 2008-2012.

L'EU ETS inclut 6 plateformes de négociations sur lesquelles sont échangés des
contrats au comptant, des contrats a terme et des options avec une valeur marchande totale
de 72 milliards d'Euros en 2010. Les échanges de contrats a terme représentent une large
part de cette valeur (environ 87 % en 2010). La compréhension de la relation entre les prix
au comptant (prix spot) et des prix des contrats a terme (futures) est ainsi d’'une importance
cruciale pour tous les participants au marché carbone. En effet, pour que le marché soit
efficient et que les prix soient justes, il faut que la relation de cost-of-carry soit respectée,
c’est-a-dire qu’il ne soit pas possible de réaliser un arbitrage entre le marché des futures et
le marché au comptant. Les marchés du carbone ne peuvent se développer que si les prix
sont a leur vraie valeur et si ces marchés fournissent assez de liquidité.

On peut considérer qu’'un marché financier est efficient si les prix refletent
entierement toutes les informations disponibles et qu’aucune occasion d’arbitrage n'est
laissé inexploitée. Cette forme d’efficience est connue comme étant l'efficience au sens
faible ou I'hypothése d'efficience spéculative. En utilisant ce modele, I'efficience impliquera
nécessairement que le prix du marché reflete entierement toutes les informations



disponibles et ainsi gu’il n'existe aucune stratégie permettant de réaliser un gain certain.
Une facon d’évaluer I'efficience d’'un marché est de tester le lien entre le prix au comptant et
le prix des futures a I'aide de tests de cointégration. Le fait que les prix des futures soient
parfaitement cointégrés aux prix au comptant par la relation de cost-of-carry montre qu’il
n’existe pas de possibilité d’arbitrage.

Bien que des papiers appropriés aient été publiés sur le comportement des prix au
comptant des quotas d'émission et des prix de futures, les études sur l'efficience des
marchés de CO2 sont plutot rares. Ces travaux étudient la relation entre les prix au comptant
et les prix des futures dans le modele de cost-of-carry sur la Phase |. Cependant, certains
auteurs émettent des doutes sur I'applicabilité de ce modeéle a cause de I'immaturité de I'EU
ETS. Dans notre étude, nous examinons I'hypothese d'efficience spéculative sur le principal
marché européen du carbone, Bluenext, en utilisant les prix au comptant et les prix des
futures des quotas de CO2 au cours de la Phase Il. Nous appliquons plusieurs tests de racine
unitaire ainsi que les tests de cointégration linéaires et non-linéaires. Les résultats indiquent
une absence de relations de cointégration linéaire et non linéaire entre les prix au comptant
et les prix futures. Nous montrons ainsi que I'efficience au sens faible n’est pas vérifiée au
cours de la Phase Il sur le marché Bluenext.

Les résultats de ce papier seront prolongés dans une prochaine étude en examinant
I'hypothése d'efficience spéculative a partir de la relation de cost-of-carry.



EUA and sCER Phase Il Price Drivers: Unveiling the reasons for the
existence of the EUA-sCER spread

Auteurs : Julien Chevallier, Emilie Alberola, Maria Mansanet-Bataller et Morgan Hervé-
Mignucci

Publication : Energy Policy 39, 1056-69 (2011)

Cet article étudie la transmission du prix entre le marché européen du CO2 et le

I"

marché “mondial” du CO2. C6té européen, l'unité de carbone échangeable est appelée
European Union Allowance (EUA). Coté mondial, I'unité de carbone échangeable est appelée
Certified Emissions Reduction (CER). Le but de cet article consiste a identifier les mécanismes
de formation du prix propre a chaque actif, ainsi que I'existence de possibilités d’arbitrage

entre les deux marchés.

En effet, il est possible pour un opérateur intervenant sur le marché européen du
CO2 d’utiliser soit des EUAs, soit des CERs, pour assurer sa conformité avec la contrainte
d’émissions. Les CERs sont des actifs fongibles, a hauteur de 13,4% en moyenne dans les
pays membres de I’'Union Européenne, avec les EUAs, et ils peuvent donc légitimement étre
utilisés dans les registres nationaux.

Cette opération d’enregistrement dans les registres européens de quotas délivrés au
niveau international (par le Comité exécutif du Clean Development Mechanism Executive
Board) est ouverte a des agents possédant effectivement des installations dans le périmétre
européen, et pouvant effectuer la double opération d’écriture entre le registre international
et le registre européen. Cette opération est donc exclue pour des intervenants purement
financiers sur le marché du CO2, telle que les banques d’investissements agissant en compte
propre. Des agents possédant a la fois des installations et des bureaux de trading sont
éligibles a I'opération d’arbitrage. On peut penser dans ce cas aux principaux acteurs sur le
marché électrique.

Si une différence de prix existe entre les deux actifs financiers (les EUAs et les CERs), il
peut devenir profitable pour un agent économique d’utiliser la source de carbone la moins
chere en vue d’assurer sa conformité. En cas de divergence positive de prix entre les deux
actifs, on comprend donc bien l'intérét que représente le fait de vendre des quotas EUAs et
d’acheter des quotas CERs, soit de vendre le spread EUA-CER.

L’article montre de facon intéressante que les agents économiques attendent que
I’écart de prix entre les deux actifs soit maximal (au-dela de six euros par tonne de CO2)
avant de bénéficier de la possibilité d’échanger un quota carbone contre un autre. Sur ces
marchés environnementaux, une possibilité de « free lunch » demeure donc en
permanence, contrairement a la théorie financiere. Cette situation peut se comprendre



aisément si I'on intégre le fait que seuls certains acteurs peuvent bénéficier de I'opération
d’arbitrage, et que cette possibilité est limitée quantitativement. Effectivement, les
opérateurs ne peuvent pas convertir plus de 200 millions de tonnes de CO2 provenant du
marché mondial en vue d’assurer leur position de conformité sur le marché européen. Par
ailleurs, I'évenement de conformité n’intervient qu’avec une fréquence annuelle sur le
marché européen du CO2, ce qui laisse aux agents la possibilité de lisser leur position de
conformité dans le temps.

A travers I'analyse économétrique, l'article retrace progressivement quels sont les
déterminants du prix du CO2 européen et du prix du CO2 mondial a partir de régressions
multiples avec effets GARCH. L’étude basée sur un modeéle vectoriel autoregressif, sur la
notion de cointégration et de modele vectoriel a correction d’erreur, montre qu’une relation
de long-terme existe entre les deux actifs, et que les déséquilibres tendent a étre corrigés
par le prix EUA. En effet, le marché européen est a ce jour le marché du carbone le plus
liquide et le plus développé (plus que le marché du CER).

Ces résultats peuvent étre utiles non seulement dans la sphére académique, pour
comprendre les inter-relations entre les marchés du CO2, mais aussi et surtout aux pouvoirs
publics avant de corriger éventuellement des breches dans la régulation environnementale.
Notons qu’a ce sujet la Commission Européenne a revu a la baisse le nombre de quotas CER
pouvant étre importés dans le systeme européen, notamment en fixant des critéres
environnementaux et technologiques plus stricts sur la provenance de la réduction des
émissions.

Enfin, ces résultats peuvent trouver un public attentif parmi les traders, brokers et
analystes financiers reliés au marché du CO2, étant donné qu’une opportunité d’arbitrage
existe, et que les compétences requises pour en bénéficier ont été clairement identifiées
dans I'article.



Option introduction and volatility in the EU ETS
Auteurs : Julien Chevallier, Yannick Le Pen et Benoit Sévi
Publication : Resource and Energy Economics 33, 855-80 (2011)

Colloques : International IAEE Conference, San Francisco, 2009 ; European Association of
Environmental and Resource Economists (EAERE) Annual Conference, Amsterdam, 2009 ;
IAEE European Conference, 2009, Vienne; Université de Stirling, 2009; Chaire Finance
Carbone Dauphine, 2011.

L'objectif de cet article est d’évaluer I'effet de I'ouverture le 13 octobre 2006 d’un
marché d’options par le European Climate Exchange (ECX) sur la volatilité du marché sous-
jacent du CO2. Les options peuvent déstabiliser le marché sous-jacent en donnant des
opportunités de spéculation ou améliorer sa liquidité et son efficacité. Les travaux menés
jusqu’a présent n’ont pas permis de déterminer quel effet 'emportait.

Nous cherchons a détecter I'impact du fonctionnement effectif du marché des options sur le
niveau et la dynamique de la volatilité du marché future. Une question importante est celle
de la date a partir de laquelle nous pouvons considérer que le marché des options
fonctionne effectivement. L’examen du volume des transactions nous incite a choisir la date
du 18 mai 2007 plutot que celle de son ouverture officielle. En effet, les transactions sur le
marché des options atteignent pour la premiere fois le volume de 1 Mton (pour les calls) ce
jour-la.

Nous choisissons les contrats futures comme actif sous-jacent en raison du comportement
atypique du prix spot pendant la phase | (2005-2007) de I'EU-ETS. Nous étudions les prix des
futures et des options pour les contrats de maturité de décembre 2008 et 2009. Afin de
contrbler I'effet des variables susceptibles d’agir sur la volatilité des futures, nous
considérons les prix des sources d’énergie primaire (pétrole brut, charbon, gas naturel), le
prix de I'électricité (y compris le clean dark spread, le clean spark spread, |le prix switch) et un
indice global du prix des matiéres premiéres (I'indice Reuters/Commodity Research Bureau).
Nous disposons de 756 observations quotidiennes du 22 avril 2005 au 4 avril 2008.

Nous employons la modélisation AR-GARCH en permettant une modification de la valeur des
parameétres aprés le 18 mai 2007. Les résultats nous améne a conclure que la volatilité a
diminué apres le 18 mai 2007. Cet effet est robuste a l'introduction des variables de
contréle. La recherche de changements structurels dans le niveau de la volatilité met aussi
en évidence un brusque accroissement en avril et mai 2006. Cette période coincide avec la
publication par la Commission Européenne du premier rapport sur les émissions vérifiées.
Les différents intervenants sur le marché du CO2 ont bénéficié alors d’un afflux
d’informations. L'estimation d’un modeéele AR-GARCH sur des fenétres d’observations



roulantes, révele aussi des changements dans la dynamique de la volatilité. La période de
mai 2006 fait apparaitre un premier changement structurel. L'impact des chocs sur la
volatilité s’accroit nettement apres cette date. Nous retrouvons I'effet du premier rapport
sur les émissions vérifiées. Nous observons un second changement en février 2007 et
I’attribuons a la publication du deuxieme rapport sur les émissions.

Conclusion Nos résultats montrent que l'ouverture d’un marché d’options a réduit la
volatilité du marché sous-jacent. Elle ne semble donc pas avoir eu d’effet déstabilisant. Des
modifications dans le niveau et la dynamique de la volatilité coincidente aussi avec d’autres
évenements, notamment la publication des rapports sur les émissions vérifiées. Une
extension de ce travail consisterait a ajouter a notre échantillon les données les plus
récentes afin d’étudier si la volatilité a subi d’autre changement ou si elle s’est stabilisée.
Une autre extension serait d’utiliser des données intra-journalieres afin de détecter des
changements structurels dans la volatilité réalisée.



On the realized volatility of the ECX CO2 emissions 2008 futures
contract: distribution, dynamics and forecasting

Auteurs : Julien Chevallier et Benoit Sévi
Publication : Annals of Finance 7, 1-29 (2011)

Colloques : Atelier Finance et Risque, Nantes, 2009 ; “Carbon Markets Workshop”,LSE, 2009,
Londres; 6th MONDER Conference, Rio de Janeiro, 2009 ; IEW Workshop, Venise, 2009 ;
European Meeting if the Econometric Society (ESEM), Barcelone, 2009 ; European IAEE
Conference, Vienne, September 2009.

Le papier s’intéresse a la modélisation de la volatilité et indirectement des
rendements sur le marché européen du carbone (contrat futures 2008 échangé sur la bourse
ECX). L'originalité de cette recherche réside dans le caractére récent de ce marché qui n’a
pas encore pas fait I'objet de ce type d’étude, ainsi que du type de données utilisées, qui
sont des données intra-journalieres, et qui nécessite ['utilisation de techniques
économétriques et statistiques récentes.

Le postulat généralement rencontré lorsque I'on s’intéresse a la modélisation stochastique
de séries de prix (rendements) observés sur les marchés financiers est que les rendements
sont normalement distribués et que la volatilité, dont on s’accorde a dire qu’elle est elle-
méme stochastique, est log-normalement distribuée (cela signifie que le logarithme de la
volatilité est normalement distribuée). Les contributions récentes en finance empirique ont
montré I'apport important qu’ont pu constituer I'accés a des donnés haute-fréquence pour
I'étude de ces aspects liés aux distributions. Dans notre article, nous étudions les
rendements a une fréquence journaliere et la volatilité a la méme fréquence mais en
utilisant le concept de volatilité réalisée. Celle-ci se calcule en sommant les rendements
intra-journaliers pris a un intervalle de 5 minutes (voir la discussion sur ce sujet dans le
papier). Lorsqu’on applique une transformation logarithme a ces volatilités réalisées
guotidiennes, elles sont bien normalement distribuées, en tous cas si on ne considére pas
des tests de normalité trop contraignants.

Un autre postulat est que le flux d’information joue le réle d’horloge pour le processus de
rendement. En effet, un flux d’information important va créer de la volatilité. C'est pour
cette raison que I'hypothése de flux d’information aléatoire se transforme en volatilité
stochastique qui entraine une déviation par rapport a la normalité pour les rendements
observés. Une facon de revenir a la normalité (courbe gaussienne) est de rapporter les
rendements (standardiser) au niveau de volatilité observé. Ainsi, les auteurs montrent que
les rendements standardisés sont apparemment normalement distribués. En utilisant les
mesures de volatilité réalisée calculées comme indiqué plus haut, nous pouvons standardiser



les rendements quotidiens et, la-encore, la normalité approximative est obtenue pour notre
série de rendements sur le marché du carbone.

Ces deux résultats montrent que le modeéle sous-jacent de diffusion a volatilité stochastique
généralement choisi dans la littérature pour les diverses applications telles que valorisation
de produits dérivés, calcul de la valeur a risque (VaR) ou autre allocation d’actifs, est
pertinent dans le cas du marché du carbone.

La deuxiéme partie de I'article s’intéresse a la question de la modélisation de la dynamique
de la volatilité quand celle-ci est estimée par le biais de rendements intra-journaliers. Cette
dynamique est estimée par le biais d’'un modeéle autorégressif qui permet de rendre compte
du comportement de mémoire longue observé dans les données. Ce modele HAR propose
en effet d’estimer des retards a 1, 5 et 22 jours avec un chevauchement qui crée une forme
de pseudo-mémoire longue tout en limitant les aspects liés aux procédures d’inférence.

Nos estimations montrent que ce modele est tout a fait apte a reproduire les
caractéristiques empiriques de la série de volatilité réalisée estimée. En outre, et c’est I'objet
de la derniere section de I'article, les résultats en terme de prévision sont significativement
améliorés lorsqu’on recourt a des données intra-journaliéres et au modele HAR, si on
compare ces résultats a des modéles GARCH standards. Il faut noter que la comparaison des
prévisions de la volatilité ne peut se faire que par le biais d’'une mesure dite « robuste » (cf.
Patton, 2011) et c’est cette mesure que nous adoptons dans notre papier. Ce résultat
confirme que dans le cas du contrat 2008 du carbone le gain a utiliser des données haute-
fréquence est bien réel.

En résumé, notre article est le premier a utiliser des données de transactions (tick-by-tick)
dans le cas du marché européen du carbone. Notre étude a porté sur le contrat futures 2008
car celui-ci a été assez liquide sur la période considérée. Nos résultats montrent que le
recours a ce type de données est fructueux a la fois pour tester des hypotheses en matiere
de distribution mais aussi pour prévoir la volatilité. Ce dernier point est d’'une grande
importance pour I'ensemble des investisseurs intervenants sur ce marché.
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Abstract

This study examines the martingale difference hypothesis (MDH) for the
market of carbon emission allowances within the European Union Emission
Trading Scheme (EU ETS) during the Phase I and the Phase II, using both daily
and weekly data over the period 2005-2009. The weak-form efficient market
hypothesis for spot prices negotiated on BlueNext, European Energy Exchange
and NordPool is tested with new variance ratio tests developed by Kim (2009).
For the Phase I, the results show that these three markets of the European Union
allowances seems to be efficiency, except after the European Commission an-
nouncements of stricter Phase II allocation in October 2006. Finally, we find that
the CO;, spot prices seem to be weak-form efficiency during the Phase II since

the MDH is failed to reject from both daily and weekly data.

Keywords: CO, emission allowances; market efficiency; martingale difference

hypothesis; variance ratio test.

JEL Classification: G14; Q53; C14.
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1 Introduction

The Kyoto protocol is designed to cut six major greenhouse gases (GHGSs) emission,
particularly carbon dioxide (CO,)! by making the polluter start paying for climate
change. Most countries have signed and ratified the Kyoto protocol to the Union
Nation Framework Convention on Climate Change.> The protocol is based on a
“cap and trade” system. Each country is agreed with the intention of reducing their
overall emissions by 8% of their 1990 levels by the end of 2012. For the 5-years
compliance period from 2008 until 2012, entities (nations or companies) that emit less
than their quota are able to sell emission credits to entities that exceed their quota. It
is also possible to sponsor carbon projects that provide a generating tradable carbon
credits. To aid countries in achieving their reduction objectives, the Protocol includes
three flexibility mechanisms: the creation of an international carbon market, Joint
Implementation and the Clean Development Mechanism.?

Several national and regional emission markets have been established in which a
variety of specialized financial instruments are traded. Europe has emerged as a leader
in the emissions trading industry with the European Union Emission Trading Scheme
(EU ETS) being the world’s largest single market for CO, emission allowances, which
covers up to 40% of European CO, emissions. Indeed, the EU ETS markets are
the largest, most liquid and most developed. Its main objective consists in giving
incentives to industrials to reduce emissions and to contribute to the promotion of
low carbon technologies and energy efficiency among CO; emitting plants. Most

important combustion entities manage their compliance between their allocation and

'The CO, belongs to the GHG group with the methane CHy, nitrous oxide N»O, hydroflurocarbons

HFC;, perfluorocarbons PFCy and sulphur hexafluoride SFg.
ZIn October 16, 2008, 183 countries had signed and ratified the Kyoto protocol. The United States is

the only country why has not ratified the protocol.
3Joint Implementation (JI) projects do not create credits, but rather transfer reduction units from

one country to another. The aim of Clean Development Mechanism (CDM) projects is to promote
investments in developing countries by industrialized nations and to encourage the transfer of low-

emission technologies.
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annual verified emissions by buying or selling European Union Allowances (EUAs) to
emit a ton of carbon.
The EU ETS was initiated in January 2005 as the central framework that EU member
states should employ in order to fulfill their obligations under the Kyoto protocol, i.e.,
to reduce the anthropogenic contribution of the greenhouse gas emissions (primarily
CO») in the atmosphere. The EU ETS has been designed to operate in two initial
phases. The first phase (2005-2007, Phase I) is a pilot phase during which the trading
volume increased from 262 million metric tons in 2005 to 818 million metric tons in
2006 to 1.4 billion in 2007. The value of trades reached 30 billion euros in 2007.
Phase I established a strong carbon market and provided new business development
opportunities for risk management and market operators. The second phase (2008—
2012, Phase II) coincides with the period when the EU must meet the 8% decrease
from 1990 levels under the Kyoto Protocol. For the post-2012 period, the European
Commission has decided to continue the operation of the market with the EU member
states having already agreed to reduce up to 2020 their greenhouse gas emissions by
an additional 12% over the obligatory levels under the Kyoto protocol.* In order to
improve the fluidity of the EU ETS, organized allowance trading has been segmented
across trading platforms: European Climate Exchange (ECX) based in London and
Amsterdam started in April 2005, Nordic Power Exchange (Nord Pool) in Norway
began in February 2005, BlueNext in France started in June 2005°, European Energy
Exchange (EEX) in Germany began in March 2005, Energy Exchange Austria (EEA)
in Austria began in June 2005, and SendeCO?2 in Spain started at the end of 2005.
Several relevant research papers have been published in the economics literature on
the emission allowance market mechanisms, policies and their implications.® Recently,

a growing empirical research has been undertaken from a financial market framework,

4See Daskalakis and Markellos (2008) for a discussion on the EU ETS.
SPowernext Carbon became BlueNext on January 2008
6See, for example, Rubin (1996), Kling and Rubin (1997), Boemare and Quirion (2002), Kosobud,

Stokes and Tallarico (2002), Svendsen and Vesterdal (2003), Vesterdal and Svendsen (2004), Bohringer
and Lange (2005), Ellerman (2005) and Ellerman, Buchner and Carraro (2007), Stern (2007), and the

Special issue in Oxford Review of Economic Policy, (2008, Volume 24, Number 2), among others.
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especially on the behavior of emission allowance spot and futures prices, e.g., Alberola
et al. (2008), Daskalakis and Markellos (2008), Paolella and Taschini (2008), Seifert
et al. (2008), Benz and Triick (2009), and Boutaba (2009).”

An important question is whether the chosen mechanics of the EU ETS have
allowed the market to operate efficiently during the Phase I (2005-2007) and since
implementing the Phase II (2008-2012). In other words, do emission allowance
prices reflect all available information to the extent that no investor can systematically
gain excess returns (see, Fama, 1970, 1991, 1998; Fama and French, 1988; Lo and
MacKinlay, 1988; among others)? Investigating this issue is crucial, since the prime
aim of the EU ETS is to allow the participating countries to achieve environmental
compliance in a cost-effective and economically optimal manner, both of which
implicitly require that the market itself is efficient. The efficiency of the CO, market
is particularly important for emission intensive firms, policy makers, risk managers
and for investors in the emerging class of energy and carbon hedge funds. Carbon
market efficiency as the objective of carbon markets is to enable firms to achieve
their emissions reductions at minimum cost. If markets are inefficient the policy
implications are that there is a greater role for regulation to improve information flows
and reduce market manipulation.

Since the seminal papers of Samuelson (1965) and Fama (1965), the efficient market
hypothesis (EMH thereafter) states that efficient market prices follow a random walk
or a martingale®, and always fully and instantaneously reflect all available and relevant
information, where the information set consists of past prices and returns. As a
result, future prices are purely unpredictable based on past price information and

fluctuate only in response to the random flow of news (Fama, 1970; 1991). Moreover,

7Some others papers focused on the relationship between spot and futures markets for EUAs, e.g.,
Uhrig-Homburg and Wagner (2007), Milunovich and Joyeux (2007), Triick et al. (2007), Alberola and
Chevallier (2009), Daskalikas et al. (2009).

8The terms “random walk” and “martingale” have been interchangeably used in the literature.
However, strictly speaking, the innovations series is i.i.d. for “random walk”, while it is a martingale

difference sequence for “martingale”. See Escanciano and Lobato (2009) for a discussion.
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since price adjustment to a new piece of information is instantaneous and accurate,
returns cannot be predicted. This means that historical prices cannot be used to form
superior forecasts or to accomplish trading profits above the level justified by the risk
assumed. Most of the EMH studies on financial markets tested for the weak-form
efficiency through the martingale difference hypothesis (MDH thereafter)’, where the
current price is the best predictor of the future price and the returns are independent
(or uncorrelated) with the past values. If the CO, spot price follows a martingale
difference sequence (MDS thereafter), then the market is weak-form efficient, and
hence not predictable. This means that it is impossible for a trader to gain excess
returns over time through speculation. If the spot price is predictable, then the market
is not weak-form efficient. This means that the traders can generate abnormal returns
through speculation. For these reasons, the predictability of return is an important issue
to this concerned with carbon market efficiency. Nevertheless, little attention has been
devoted on the weak-form efficiency in the CO, markets. Seifert et al. (2008) showed
that the daily CO; spot price negotiated on BlueNext from June 24, 2005 to December
15, 2006, seems to be relatively efficient, using autocorrelation tests. Daskalakis and
Markellos (2008) assessed the weak-form efficiency by analyzing spot and futures
market data from BlueNext, Nord Pool and ECX, using daily prices covering the period
from the first available quote up to December 12, 2006. They found that BlueNext and
Nord Pool markets are not consistent with weak-form efficiency from variance ratio
tests and technical analysis trading rules.

In this paper we extend the examination of the weak-form EMH in the EU ETS
markets for CO, emission allowances in two ways. First, this study is based on a
more extensive sample. We study daily data for three spot markets, BlueNext, EEX
and NordPool, during the Phase I (2005-2008) and the Phase 11 (2008—2009) in order
to compare the evolution between the two initial phases and these markets. We also

investigate the EMH over various sub-periods in order to analyze the effects of the

9Note that if the MDH is based on the theory of efficiency, the EMH does not imply that prices follow
a martingale difference sequence (MDS). Therefore, if prices do not follow a MDS, this does not imply

inefficiency of the market. See Lo and MacKinlay (2001) for a discussion on MDH and EMH.
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important structural change due to the first disclosure of 2005 verified emissions on
April 2006 revealing the long position of each plant which was accompanied by a
sudden allowance price collapse, as well as the European Commission announcements
of stricter National Allocation Plans II validation in October 2006 which reinforced the
depressive effect on prices. Furthermore, we analyze the weekly data for the three spot
markets in order to consider a market as perfectly weak-form efficient if it is found to
behave randomly at any level of data frequency. This avoids the shortcomings with the
high and medium/low frequency data (e.g., non-trading, bid-ask spread, asynchronous
prices). Second, the weak-form EMH is evaluated from powerful method, namely the
variance-ratio [VR] test.!® More precisely, we apply the bootstrapped automatic VR
test suggested by Kim (2009). This VR test is robust to heteroscedasticity and non-
normality which are present in CO, emission allowance prices (e.g., Milunovich and
Joyeux, 2007; Daskalakis and Markellos, 2008; Benz and Triick, 2009) and is powerful
in small finite sample.

The remainder of this paper is organized as follows: Section 2 presents the
bootstrapped automatic VR test; Section 3 summarizes the characteristics of the data,
and the empirical results on the MDH are given in Section 4. The conclusion is drawn

in Section 5.

2 Variance ratio tests

Since the seminal work of Lo and MacKinlay (1988, 1989) and Poterba and Summers
(1988), the standard variance ratio [VR] test or its improved modifications have been
widely used for testing market efficiency, including the multiple variance ratio test of
Chow and Denning (1993), sign and rank tests of Wright (2000), wild bootstrap test

of Kim (2006), and power-transformed test of Chen and Deo (2006).!

106 and MacKinlay (1989) examined the VR, Dickey-Fuller unit root and Box-Pierce serial
correlation tests and found that VR test was more powerful than the others under the heteroscedastic

random walk.
See Hoque, Kim and Pyun (2007) and Charles and Darné (2009) for a review.
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The VR test is based on the property that, if return is purely random, the variance of
k-period return (or k-period differences), y; — y;_x, of the time series y;, is k times the
variance of the one-period return (or the first difference), y, —y,—1. Hence, the VR at
lag k, VR(k), defined as the ratio of 1/k times the variance of k-period return to that of
one-period return, should be equal to one for all values of k.

The VR test evaluates the hypothesis that a given time series or its first difference
(or return), x; = y; — y;_1, is a collection of independent and identically distributed

observations (i.i.d.) or that it follows a MDS. Define the VR of k-period return as

Var(x; +xi—1 + - +x-x41)/k

Vik) = Var(x;)
Var(yt_yt—k)/ki = (k_i) )
T — _1+2;< Z )pl

where p; is the i-th lag autocorrelation coefficient of {x;}. V(k) is a particular linear
combination of the first (k — 1) autocorrelation coefficients, with linearly declining
weights. The central idea of the variance ratio test is based on the observation that
when returns are uncorrelated over time, we should have Var(x; + - +x_¢41) =
kVar(x;),ie. V(k) = 1.

A test can be constructed by considering the statistic based on an estimator of V(k).

Following Wright (2000), the VR statistic can be written as

T T
VR(x;k) = {(Tk)l Y (64X kg —kﬁ)z} + {T1 ) (x —ﬁ)2} (1)
t=1

1=k

where i = T~'Y 1, x;. If the return follows a MDS, the expected value of VR(x;k)
should be equal to unity for all horizons k. Lo and MacKinlay (1988) proposed
the asymptotic distribution of VR(x;k). Moreover, Cochrane (1988) showed that the
estimator of V (k) can be interpreted in terms of the frequency domain. This estimator
which uses the usual consistent estimators of variance is asymptotically equivalent to
27 the normalized spectral density estimator at the zero frequency.

To implement the test, one should test for the null hypothesis that the VR is

equal to one for a set of (holding periods) k values. For example, popular choices in
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empirical applications include k € {2,5,10,30} for daily return, while k € {2,4,8,16}
for weekly return (see, for example, Belaire-Franch and Opong, 2005; and Fong et
al., 1997). However, these choices are entirely arbitrary and adopted without any
concrete statistical justifications. In view of this, Choi (1999) proposed an automatic
variance ratio (AVR, thereafter) test, in which the optimal value of holding period & is
determined automatically using a completely data-dependent procedure.

Let x; denote asset return at time 7, where t = 1,...,T. Choi’s (1999) AVR test is
based on a VR estimator related to the normalized spectral density estimator at zero

frequency, namely,

T—1
VR(k) =142 h(i/k)p(i), (2)
i=1
where p(i) = 9(i)/9(0) is the sample autocorrelation of order i, (i) is the sample

autocovariance of order i, and h(x) is the quadratic spectral kernel defined as

25 [sin(6mx/5)

h pu—
)= T2 | om/s

—cos (6mx/5) |,

According to Choi (1999), under the condition that x; is is serially uncorrelated,

AVR(k) = \/T Jk[VR(k) — 1] /v/2 =4 N(0,1), 3)

as T — oo, k — oo, and T /k — oo, when x; is an i.i.d. sequence with finite fourth
moment. To test for Hy : VR(k) = 1, a choice for the value of lag truncation point k
should be made, which is equivalent to the value of holding period in the time domain.
Choi (1999) proposed a data-dependent method of choosing k optimally, following
Andrews (1991). The AVR test statistic with the optimally chosen lag truncation point
is denoted as AVR(k*). The AVR(k*) test is an asymptotic test which may show
deficient small sample properties, especially under conditional heteroscedasticity.
When x; is subject to conditional heteroscedasticity, Kim (2009) suggested to employ
the wild bootstrap of Mammen (1993) to improve small sample properties, as in Kim
(2006) who applied the wild bootstrap to the Lo-MacKinlay and Chow-Denning tests.

Kim’s (2009) wild bootstrap AVR test is conducted in three stages as follows:
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1. Form a bootstrap sample of size T as x;' =nx; (t =1,...,T) where 1), is arandom

variable with zero mean and unit variance;
2. Calculate AVR*(k*), the AVR(k*) statistic calculated from {x;}L ;

3. Repeat 1 and 2 B times, to produce the bootstrap distribution of the AV R statistic

{AVR*(k*: )}

The test for Hy against the two-tailed alternative is conducted to using the p-value,
which is estimated as the proportion of the absolute values of {AVR*(k*; j) }?:1 greater
than the observed statistic AVR(k*). Alternatively, one may use the 100(1 — 2a)
per cent confidence interval [AVR*(at), AVR* (1 — a)], where AVR* (o) denotes the o'”
percentile of {AVR*(k*; j) }1]3:1. As advocated by Kim (2009), the number of bootstrap
iterations is set to 500.

Kim (2009) found that the wild bootstrap AVR significantly improves the size and
power properties of the AVR test. Furthermore, this wild bootstrap AVR test compares
favorably to the other alternatives such as the wild bootstrap Chow-Denning test of
Kim (2006), the power-transformed test of Chen and Deo (2006) and the joint sign test
of Kim and Shamsuddin (2008), where the choice of holding periods k is arbitrarily

made.

3 Data description

The spot data of the study consists of the daily closing prices for EUA negotiated on
BlueNext, EEX and Nordpool. For the Phase I, the dataset covers the period from
June 24, 2005 to April 25, 2008 (708 observations) for BlueNext, August 04, 2005
to March 20, 2008 (664 observations) for EEX, and October 25, 2005 to March 31,
2008 (610 observations) for NordPool. For the Phase II, they cover the period from
February 26, 2008 to November 11, 2009 (435 observations) for BlueNext, January
16, 2009 to November 11, 2009 (209 observations) for EEX, and April 15, 2008
to November 11, 2009 (395 observations) for NordPoll. Figures 1 and 2 provide a

graphical representation of these series. We also examine the weekly spot data where

10
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the prices are observed on Wednesday or on the next day if the markets are closed on
Wednesday. We use the both frequencies to overcome issues like biasness with daily
and weekly data (e.g., non-trading, bid-ask spread, asynchronous prices).

Table 1 presents summary statistics for the returns calculated as the first differences
in the logs of the EUA prices. During the Phase I, the CO, markets display negative
mean returns of about —0.01% per day whereas during the Phase II the mean returns
are very low (4+0.001%). Note that the risk measured as the standard deviation is
higher for the Phase I (close to 0.100) than that for the Phase II (close to 0.030).
All the returns are highly non-normal, i.e. showing evidence of significant excess
skewness and excess kurtosis during the Phase I, as might be expected from daily
returns. Note that there is no evidence of excess skewness during the Phase Il
Moreover, the kurtosis is significant and very high for the Phase I, implying that the
distribution of the returns is leptokurtic and thus the variance of the CO, spot prices
is principally due to infrequent but extreme deviations. A leptokurtic distribution
has a more acute peak around the mean and fat tails. The Lagrange Multiplier test
for the presence of the ARCH effect indicates clearly that the prices show strong
conditional heteroscedasticity, which is a common feature of financial data. In other
words, there are quiet periods with small prices changes and turbulent periods with
large oscillations.

For the weekly data (Table 1), the returns show the same characteristics than those for
the daily data. Note that NordPool for the Phase I and EEX for the Phase II do not

exhibit conditional heteroskedasticity.

4 Testing the efficient market hypothesis

We investigate the weak-form EMH for BlueNext, EEX and Nordpool by testing the
MDH from wild bootstrapped AVR test. The Table 2 displays the results for daily
(Panel A) and weekly (Panel B) data during the Phase I and the Phase II. The results
show that the MDH is rejected for EEX at the level 5% and for BlueNext and NordPool

at the level 10% whereas the results are consistent with the MDS in the EUAs spot

11
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Table 1: Statistical analysis of returns

Market Obs. Mean SD Skewness  Kurtosis ARCH(10)

Daily

Phase 1

BlueNext 707 -0.011 0.096  -0.669¢ 18.876% 37.583¢
EEX 663 -0.010 0.125 0.726¢ 18.857¢ 54.682¢
NordPool 609 -0.011 0.121 -0.176 29.321¢ 51.361¢
Phase I1

BlueNext 434 -0.001 0.028 -0.125 4.346¢ 34.332¢
EEX 208 0.001  0.031 0.166 4.007¢ 25.608¢
NordPool 394  -0.002 0.029 0.020 4.630¢ 18.705¢

Weekly
Phase 1

BlueNext 146  -0.054 0.161 -1.351¢ 6.320¢ 10.286

EEX 134 -0.052 0.212 -0.621¢ 8.531¢ 59.1034
NordPool 124 -0.062 0.171 -1.191¢ 5.605¢ 9.773
Phase 11

BlueNext 88  -0.004 0.064 -0.424 4.437¢ 31.114¢
EEX 41 0.004 0.072 -0.316 3.949¢ 13.992
NordPool 80  -0.007 0.067 -0.430 4.543¢4 29.529¢

Notes: The skewness and kurtosis statistics are standard-normally distributed under the null of normality distributed
returns. ARCH(10) indicates the Lagrange multiplier test for conditional heteroscedasticity with 10 lags. ¢ means

significant at the levels 5%.

prices during the Phase II for the three markets from the daily data. These results are
confirmed from the weekly data. The finding on the Phase I confirms that of Daskalakis
and Markellos (2008) for BlueNext and NordPool on a shorter period. Therefore, it
seems that CO, spot markets for BlueNext, EEX and NordPool can be considered
perfectly weak-form efficient during the Phase Il because they behave randomly at all
levels of data frequency.

We re-examine the weak-form EMH during the Phase I for the three markets

due to the presence of a structural break!? on the April 25, 2006 which can biased

12The structural break has been detected using the Bai and Perron (1998, 2003) tests.

12
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Table 2: Results of AVR* tests for Phase I and Phase 1II.

BlueNext EEX NordPool
Daily
Phase | —3.154b —3.5554 —3.6400
(0.072) (0.047) (0.059)
Phase 11 0.437 0.689 0.566
(0.583) (0.446) (0.497)
Weekly
Phase I 1.908¢ 2.3730 2.021°
(0.035) (0.057) (0.056)
Phase 11 0.064 —0.185 0.043
(0.827) (0.675) (0.877)

4 and ? Significant at the levels 5% and 10%, respectively. We report the VR statistic for each test. Phase I covers the
period from June 24, 2006 to April 25, 2008, and Phase II covers the period from February 26, 2008 to September 22,
2008.

the VR tests (Lee and Kim, 2006). Indeed, the first disclosure of 2005 verified
emissions on April 2006 revealing the long position of each plant was accompanied
by a sudden allowance price collapse (more than 50%).!3 On the May 15, 2006 the
European Commission confirmed verified emissions were about 80 million tons or
4% lower than yearly allocation. This break highlights that when the cap is not set
below business-as-usual emissions, allowance trading does not necessarily guarantee
a carbon price high enough to provide incentives to reduce CO, emissions since the
stringency of the cap did not appear sufficient for market agents, and consequently the
allowance price collapsed (Alberola et al., 2008). Furthermore, from October 2006 to
the end of 2007 CO, prices tend towards zero following the European Commission
(EC) announcement of stricter National Allocation Plans (NAPs) II validation, until
the end of Phase I. This price pattern suggests that allowance trading was based
on heterogeneous anticipations prior to information disclosure. Among the main
explanations of low allowance prices towards the end of Phase I, previous literature

identifies over-allocation concerns, early abatement efforts in 2005 due to high

13Beginning at 8 euros on January 1, 2005 EUA prices rose to 25-30 euros until the end of April. On
the last week of April 2006 prices collapsed when operators disclosed 2005 verified emissions data and
realized the scheme was oversupplied. After this considerable adjustment by 54% in four days, EUA

prices moved in the range from 15 euros to 20 euros until October 2006.

13
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allowance prices, and possibly decreasing abatement costs in 2006 due to abnormal
temperatures and switching from coal- to gas-fired electricity in a context of falling
natural gas prices compared to coal (Ellerman and Buchner, 2008; Mansanet-Bataller
et al., 2007; Alberola et al., 2008; Hintermann, 2010). Alberola and Chevallier (2009)
suggested that low allowance prices may also be explained by banking restrictions
between 2007 and 2008. Given the impossibility of using Phase I allowances in Phase
IT (no bankability), the overall excess in allowances led to a decrease in their price
which finally dropped to zero.'*

Therefore, we investigate the effects of these events on the efficiency of the EUAs spot
market during the Phase I, by re-running the VR tests for the following subperiods:
Beginning of the spot price negociations (2005) [BSPNO5] to April 24, 2006, and
April 25, 2006 to the end of the spot price negociations (2008) [ESPNO8], namely
before and after the compliance break, as well as April 25, 2006 to October 26, 2006
to ESPNOS, namely before and after the EC announcement of stricter NAPs I1.

Table 3 displays the results of bootstrapped AVR tests on the sub-periods for daily data
(Panel A) and weekly data (Panel B). The structural change due to the first disclosure
of 2005 verified emissions on April 2006 does not seem to have an impact on the
weak-form efficiency since the test statistics are significant at the levels 5% or 10% for
the three markets from the daily data. Nevertheless, the MDH is rejected before the
compliance break from the weekly data.

The EC announcement of stricter Phase II allocation appears to have a negative
effect on the EUAs spot markets since after this announcement in October 2006. The
CO, spot prices in BlueNext, EEX and Nordpool are not coherent with the MDS at the
level 5% from both daily and weekly data. This indicates that before October 2006 the
daily data reflected the most up-to-date information about CO; spot prices, and thus
it is impossible for a trader to generate excess returns over time through speculation.
However, there was possibility of abnormal returns through speculation after October

2006.

14Gee Hintermann (2010) for a discussion on the allowance price drivers in the Phase I of the EU ETS.

14
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Table 3: Results of AVR* tests in Phase I sub-periods.

BlueNext EEX NordPool
Daily

Compliance break

BSPNO5 — April 2006 3.077¢ 1.948" 2.208"
(0.006) (0.077) (0.062)

April 2006 — ESPN08 —3.414¢ —3.407¢ —3.685¢
(0.027) (0.026) (0.039)

Stricter NAPs 11

April 2006 — Oct 2006 0.034 —0.662 —0.023
(0.955) (0.665) (0.954)

Oct 2006 — ESPN0O8 —3.043¢ —2.9084 —3.120¢
(0.039) (0.043) (0.033)

Weekly

Compliance break

BSPNO5 — April 2006 —0.009 0.001 —0.424
(0.935) (0.995) (0.334)

April 2006 — ESPN08 2.000¢ 2.024° 2.244¢
(0.020) (0.092) (0.028)

Stricter NAPs 11

April 2006 — Oct 2006 0.357 0.457 0.416
(0.637) (0.556) (0.466)

Oct 2006 — ESPN0O8 1.617¢ 2.2114 1.911¢
(0.035) (0.019) (0.023)

“ and ® Significant at the levels 5% and 10%, respectively. We report the VR statistic for each test. BSPNO5: Beginning

of the spot price negociations (2005); ESPNO8: End of the spot price negociations (2008).

15
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5 Conclusion

This paper explored the weak-form efficiency in the EU ETS markets for carbon
emission allowances, using both daily and weekly spot prices negotiated on BlueNext,
EEX and Nordpool, during the Phase I and Phase II. For that, we used new variance
ratio tests, which are robust to heteroscedasticity and non-normality — present in EUASs
spot prices — and powerful in small sample, namely the bootstrapped automatic VR
tests developed by Kim (2009).

For the Phase I, the results showed that these three markets of the EUAs seems to
be efficiency, except after the European Commission announcements of stricter Phase
IT allocation in October 2006, suggesting the possibility of abnormal returns through
speculation. Note that the first disclosure of 2005 verified emissions implying a sudden
allowance price collapse in April 2006 did not appear to affect the efficiency. Finally,
we found that the CO, spot prices seem to be weak-form efficiency during the Phase
II since the MDH is failed to reject from both daily and weekly data.

Daskalakis and Markellos (2008) argued that allowing for short selling and for
allowance banking between successive phases may increase liquidity and improve the
efficiency of the market. It is imperative that policy makers address these issues during
the eminent reviewing process, in order to ensure that the EU ETS evolves into a
mature, efficient and internationally competitive market.

Further research should investigate the weak-form efficiency on the futures markets.

16
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Figure 1: Daily spot prices during Phase I
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Figure 2: Daily spot prices during Phase 11
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Abstract

In this paper, we attempt to examine the speculative efficiency hypothesis
on CO, emission allowance prices negotiated on Bluenext, by testing the rela-
tionship between futures and spot prices from the Fama (1970) framework. This
approach is based on the joint hypothesis of no risk premium and unbiasedness
of futures prices. Cointegration tests are performed to confirm the legitimacy of
futures and spot prices being included in the regression, following the approach
proposed by Balke and Fomby (1997). The results indicate the absence of linear
and nonlinear cointegration relationship between spot and futures prices. The
speculative efficiency hypothesis did not hold even if the joint hypothesis is not

rejected because of the existence of serial correlation in the residuals.

Keywords: CO; emission allowances; Cointegration; Spot and futures prices;

Market efficiency.

JEL Classification: G13; G14; Q50.
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1 Introduction

On January 2005, the European Union Emission Trading Scheme (EU ETS) went
into effect. The EU ETS is one of the most important initiatives taken to reduce the
greenhouse gas (GHG) emissions (primarily CO;) that cause climate change (Kyoto
protocol). The European Union (EU)! includes approximately 11,500 participating
installations spread across twenty-seven member states. In 2010, it is estimated that the
sources to which the trading scheme applies account for 45 per cent of CO, emissions
and a little less than 40 per cent of total GHG emissions in that year.

The EU ETS introduces a cap-and-trade system, which operates through the
creation and distribution of tradable rights to emit, usually called EU allowances
(EUAs), to installations. Since a constraining cap creates a scarcity rent, these EUAs
have value. The distribution of these rights for free is called allocation and is the unique
feature of cap-and-trade system. The cap-and-trade scheme operates over discrete
periods, with the first or pilot period (Phase I, 2005-2007) and with the second period
corresponding to the first commitment period of the Kyoto Protocol. This period will
extend from 2008 to 2012 (Phase II) and will be followed by a third period from 2013
to 2020 (Phase III). The EU target is a reduction of 8 per cent below 1990 emissions
in the 2008-2012 period. To help countries in achieving their reduction objectives, the
Protocol includes three flexibility mechanisms: The creation of an international carbon
market, Joint Implementation and the Clean Development Mechanism.?

The EU ETS includes spot, futures, and option markets with a total market value of

To improve the fluidity of the EU ETS, organized allowance trading has been segmented across
trading platforms: Nordic Power Exchange (Nord Pool) in Norway began in February 2005, European
Energy Exchange (EEX) in Germany began in March 2005, European Climate Exchange (ECX) based in
London and Amsterdam started in April 2005, BlueNext in France and Energy Exchange Austria (EEA)
in Austria began in June 2005, and SendeCO2 in Spain started at the end of 2005.

2Joint Tmplementation (JT) projects do not create credits, but rather transfer reduction units from
one country to another. The aim of Clean Development Mechanism (CDM) projects is to promote
investments in developing countries by industrialized nations and to encourage the transfer of low-

emission technologies.
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72 billion Euros in 2010. Futures contracts account for a wide part of this value (about
87% in 2010).. Understanding the relationship between spot and futures prices is thus
of crucial importance for all participants in the carbon market. Carbon trading works
only if markets for carbon provide enough liquidity and pricing accuracy, i.e., markets
provide prices that are useful for hedgers and other users of carbon markets. The
efficiency of the CO, market is particularly important for emission intensive firms,
policy makers, risk managers and for investors in the emerging class of energy and
carbon hedge funds.

As pointed out by Fama (1970), a financial market can be considered as efficient
if prices fully reflect all available information and no profit opportunities are left
unexploited known as the weak-form efficiency or speculative efficiency hypothesis.
Speculative efficiency is essential for an operator who wants to hedge on the futures
market against any possible price fluctuations. According to the futures markets
literature, the model that futures prices are unbiased estimators of future spot prices
is the appropriate framework to test efficiency. Using this model, efficiency will
necessarily imply that the market price fully reflects available information and thus
there exists no strategy that traders can speculate in the futures market on the future
levels of the spot prices exploiting profits consistently. One way to test the link
between spot and futures prices is to use cointegration tests.> In others words, it
should expect spot and futures prices for any commodity to be linked through a long-
run equilibrium relationship because it can be argued that spot and futures prices
are driven by the same fundamentals. Evidence of no cointegration seems to be
consistent with the speculative market hypothesis. Indeed, economic theory suggests
that cointegration is unlikely to be observed in efficient markets (Granger, 1986).
Another way to test whether futures prices are the best predictors of the spot prices
is to use the regression proposed by Fama (1970). In this approach, market efficiency

requires that futures prices should be unbiased predictors of future spot prices and

3Cointegration is a necessary condition for market efficiency but nor a sufficient condition. A test for

serial correlation is needed to infer about market efficiency.
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residuals of the regression are not serially correlated. Simple empirical tests are based
on the joint hypothesis of market efficiency and unbiasedness of futures prices (risk
neutrality).

Although relevant papers have been published on the behavior of emission
allowance spot and futures prices (see, e.g., Alberola et al., 2008; Daskalakis and
Markellos, 2008; Paolella and Taschini, 2008; Seifert et al., 2008; Benz and Triick,
2009), studies on CO, market efficiency are rather sparse. Alberola and Chevallier
(2009), Uhrig-Homburg and Wagner (2009) and Joyeux and Milunovich (2010)
study the relationship between spot and futures prices from the cost-of-carry model.
However, Daskalakis and Markellos (2008) and Daskalakis et al. (2008) have some
doubts on the applicability of a cost-of-carry model because of the EU ETS is a very
young market means that significant differences in terms of stakeholders, liquidity,
information and pricing may exist between spot and futures markets. Recently,
Chevallier (2010) analyzes the relation between spot and futures prices using daily
data from February 26, 2008 to April 15, 2009.* He rejects a cointegrating relationship
between CO, allowances spot and futures prices when accounting for the presence
of a structural break in February 2009, possibly due to the delayed impact of the
“credit crunch” crisis. A vector autoregression analysis indicates that futures prices
are relevant for price information in the spot market (the opposite is not true). Charles
et al. (2011) examine the martingale difference hypothesis (MDH) within the EU ETS
during the Phase I and the Phase II, using both daily and weekly data over the 2005-
2009 period. Their results indicate that for the Phase I, the spot price changes are
predictable, suggesting the possibility of abnormal returns through speculation. The
authors fail to rejet the MDH during the Phase II, meaning that the European carbon
market seems to be weak-form efficient.

The aim of this paper is to investigate the speculative efficiency hypothesis between

spot and futures prices in order to provide empirical evidence for efficiency on the EU

4Note that Chevallier (2010) employ the daily spot prices negotiated on BlueNext and the daily futures

prices negotiated on ECX when investigating the relation between spot and futures prices.



hal-00570307, version 1 - 28 Feb 2011

ETS. We thus study the daily spot et futures prices negotiated on Bluenext, covering
the period from February 22, 2008 to October 20, 2010, namely the Phase II.°> We
test the joint hypothesis of market efficiency and unbiasedness of futures prices from
the Fama (1970) regression. As it is well known that appropriate tests for efficiency
and unbiasedness are necessarily dependent upon the underlying time-series properties
of the data, we first use various unit roots tests, and we then apply linear (Johansen,
1995) and nonlinear (Seo, 2006) cointegration tests following the approach proposed
by Balke and Fomby (1997).

The remainder of this paper is organized as follows: Section 2 presents the
speculative efficiency hypothesis. The empirical framework is discussed in Section

3. The conclusion is drawn in Section 4.

2 The Speculative Efficiency Hypothesis

Theoretically, if spot and futures markets operate efficiently and are frictionless,
futures contracts should be traded at a price known as the fair value. The starting
point of most studies is the arbitrage free or cost-of-carry model in which the futures

price is represented as
F = S,e(H'”_d)(T_t) (1)

where F; is the futures price at time ¢; S; is the spot price at time ¢; r is the risk-free
interest rate; u is the storage cost; d is the convenience yield; and 7 is the expiration
date of the futures contract and (7 —¢) is the time of expiry of the futures contract.

Taking logarithms of both sides of equation (1) gives

Ln(F) =Ln(S) + (r+u—d)(T —1) )

>BlueNext is the most liquid spot CO; exchanges operating under the EU ETS. Contrarily to others
studies (Uhrig-Homburg and Wagner, 2009; Chevallier, 2010) we take the futures prices negotiated also
on Bluenext but not on ECX, which is the most liquid futures exchange for EUAs, to have the data

negotiated on the same market.
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This equation suggests that the long-term relationship between the logs of the spot and
futures prices should be one to one.

In practice, researchers have had difficulty testing the arbitrage relationship
embodied in equation (2) due to the unobservable nature of storage costs and
convenience yields (Joyeux and Milonovich, 2010). Hence, most studies have focused

on the Fama (1970) speculative market efficiency tests of the form
S =o+PF_i +¢& 3)

In this approach, market efficiency requires that futures prices should be unbiased
predictors of future spot prices. Simple empirical tests of the speculative efficiency
hypothesis are based on tests of the joint hypothesis & = 0 and B = 1. Failure to
reject the joint hypothesis implies that the futures price determined at time # — 1 is
an unbiased predictor of the spot price for time . However, statistical rejection of
this joint hypothesis means either that there is a risk premium (o # 0) or that the
market is inefficient (B # 1). As underlined by Bilson (1981), it is important to
note, however, that best unbiased forecasting by the futures price is not a necessary
component of an efficient markets approach. It is easy, for example, to construct a
model in which markets are efficient in the sense of removing any opportunities for
risk-adjusted excess returns but in which there is a predictable bias in the futures price
forecast.

It is well known that appropriate tests for efficiency and unbiasedness are
necessarily dependent upon the underlying time-series properties of the data. If the
price series are non-stationary, hypothesis tests based on equation (3) will give biased
results. Regressing a non-stationary variable, which can only be made stationary by
differencing on a deterministic trend, generally leads to the problem of a spurious
regression, involving invalid inferences based on ¢- and F-tests (Granger and Newbold,
1974). In such cases the researcher could falsely conclude that a relationship exists
between two unrelated non-stationary series. One way to circumvent the stationary

problem is to estimate equation (3) in first-difference form (Hansen and Hodrick, 1980)

AS; =Y+OAF | +& 4)
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where A is the first-difference operator. Market efficiency and unbiasedness are jointly
implied by the restrictions y=0and 8 = 1.

Nevertheless, it is well known that equation (4) are misspecified if the two series
(spot and futures prices) are cointegrated, that is to say if they have the same stochastic
trend in common. When two price series, such as the future and the spot price series,
are both integrated of the same order d, a linear combination of two I(d) series can
be integrated of an order lower than d. More specifically, it is possible that two series
that are non-stationary and contain a unit root, for example /(1), can generate a linear
combination that is stationary, /(0). These two series are said to be cointegrated with

a cointegrating relationship of the following form
& =S —a—PF_ 5)

If the two series are cointegrated, i.e. showing a stable common relationship in the
long term, it is possible that the movement of one asset is linked to the movement of
other asset. Thus, the establishment of a cointegration relationship is equivalent to
the existence of an error correction term, which implies that in the face of a deviation
of one asset price from the induced long-run relationship. Indeed this term describes
the adjustment process due to disequilibrium. In the case of cointegration relationship
between spot and futures prices, it is necessary to use an error correction representation

described in Granger (1986)

m n
AS; = —pg_1+O0AF_1+ ) OAF_i+ Y WAS,_j+V; (6)
i=2 =1

where &, is the error correction term, and V; is a stationary white-noise residual term.
Cointegration implies p > 0 because spot price changes respond to deviations from
long-run equilibrium. The speculative hypothesis implies the following restrictions

pzl,G;«éOandG,-:qlizo.

3 Empirical results

The study sample consists of the daily closing prices of spot EUA prices from February

22, 2008 to October 20, 2010 (661 observations) and futures EUA prices of maturity
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December 2010, December 2011 and December 2012 from April 21, 2008 to October
20, 2010 (624 observations) both negotiated on BlueNext.® Figure 1 provides a
graphical representation of the spot and futures series. Note that the futures prices
are higher than spot prices. This market condition is known as contango. Note that as
the futures contract approaches to its maturity date, the difference between futures and
spot prices is smaller and diminishes to zero at maturity since spot and futures prices
converge.

We apply various unit root tests on spot and futures prices and find that all price
series are characterized by a unit root (Table 1). When tests are applied on series in
first-difference, they are found to be stationary. In other words, all price series are
integrated of order 1. These results confirm those obtained by Alberola et al. (2008),
Daskalakis et al. (2009), Chevallier (2009) and Alberola and Chevallier (2009).

Table 2 presents summary statistics for the returns calculated as the first differences
in the logs of the EUA spot and futures prices. The kurtosis coefficient is significant for
the both series, implying that the distribution of the log-returns is leptokurtic and thus
the variance of the CO, prices is principally due to infrequent but extreme deviations.
A leptokurtic distribution has a more acute peak around the mean and fat tails. The
Lagrange Multiplier test for the presence of the ARCH effect clearly indicates that
the log-returns show strong conditional heteroscedasticity, which is a common feature
of financial data. In other words, there are quiet periods with small price changes
and turbulent periods with large oscillations. Moreover, the skewness coefficient is
negative and significant only for the spot series, implying that there is more negative
log-returns than positive log-returns. This result means that the distribution of the
spot price changes is asymmetric. No evidence of skewness is found in the futures
log-returns.’

To test for cointegration between the spot and futures prices, both linear

5Data for Bluenext are available on www.bluenext.fr.

"Note that the spot prices display less volatility (measured by standard deviation) than do futures
prices. This can suggest that the investors tend to be less conservative in their trading approach and take

price shocks in the spot market seriously.
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(Johansen,1995) and nonlinear (Seo, 2006) tests following the approach proposed by
Balke and Fomby (1997) are used.

We first implement the Johansen maximum likelihood procedure (Johansen, 1988,
1991). This approach consists in estimating a Vector Error Correction Model (VECM)
by maximum likelihood, under various assumptions about the trend or intercept
parameters and the number r of cointegrating vectors, then conducting likelihood ratio

tests. We write a p-dimensional VECM as follows
Ay, =A'X;_ (B) + u

with
/
X[*l = { 1 Wt—](B) A)C[_] e Ax,_n }

where x; is a p-dimensional /(1) time series which is cointegrated with one (p x 1)
cointegrating vector 3, wy(B) = PB'x; is the 1(0) error-correction term, u, is an error
term, and A is a coefficient matrix.

Johansen (1995) considers five restrictions on the deterministic components. In model
1 the level data y, have no deterministic trends and the cointegrating equations do
not have intercepts, giving the most restrictive specification. In model 2 the level
data y; have no deterministic trends and the cointegrating equations have intercepts.
In model 3 the level data y, have linear trends but the cointegrating equations have
only intercepts. In model 4 the level data y, and the cointegrating equations have
linear trends. In model 5 the level data y, have quadratic trends and the cointegrating
equations have linear trends, giving the least restrictive specification. These five
cases are nested from the most restrictive to the least restrictive. As noted by Kiihl
(2007), the formulation of the model has important implications for testing the market
efficiency hypothesis. To obtain the correct model, statistical inferences must be
carefully examined first. A LR test is thus carried out (Johansen, 1994). The form

of the LR tests is as follows

2o 1=}
LR=-T ) 1;1[1 ] with j.k=1,...,5and j # k. (7)

10
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From the results reported in Table 3, we concluded that model 1 seems to be the most
appropriated to test the cointegration relationship between the spot and futures price
series.

Johansen (1988, 1991) proposes two LR test statistics to test whether there is no
cointegration under the null against the alternative linear cointegration. The first test,

called lambda max test, is based on the log-likelihood ratio
LR(r|r+1) = —TIn(1—2XA41)

where T is the sample size, k is the number of endogenous variables, and r =
0,1,...,k— 1. This LR test tests the null hypothesis that the cointegration rank is
equal to r against the alternative that the cointegration rank is equal to r + 1.
The second test, called the trace test, is based on the log-likelihood ratio
k
LR(rlk) = -7 ) In(1-2)
i=r+1

where A; is the largest eigenvalue of the A matrix in equation, k is the number of
endogenous variables, and r =k —1,...,1,0. This LR test tests the null hypothesis of
r cointegrating relations against the alternative of k cointegrating relations, where k is
the number of endogenous variables, for r =0,1,...,k— 1.
Results of these tests are given in Table 4.8

The null hypothesis of none cointegrating vector between the spot and futures
prices cannot be rejected, implying that the linear VECM does not seem to be the most
suitable model for the data of interest. This finding is in contradiction with that of
Chevallier (2010). This difference can be explained by the fact that Chevallier (2010)
employs (i) the daily spot prices negotiated on BlueNext and the daily futures prices
negotiated on ECX when investigating the relation between spot and futures prices;
and (ii) a shorter period (February 26, 2008 to April 15, 2009) than our period of

interest. Evidence of no cointegration seems to be consistent with the speculative effi-

8We have to specify the lags of the test VAR to apply the Johansen cointegration tests. We use the
traditional criteria (Akaike, Schwarz, Hannan-Quinn, Final Prediction Error) to select the optimal lag

length.

11



hal-00570307, version 1 - 28 Feb 2011

ciency hypothesis.” Indeed, economic theory suggests that cointegration is unlikely to
be observed in efficient markets (Granger, 1986). The Equation 6 means that the price
of one asset does not only depend on its own past prices but also on the history of a
different asset’s prices, implying that the speculative efficiency hypothesis is violated

(Richard, 1995).

Nevertheless, as pointed by Balke and Fomby (1997), the concept of cointegration
is based on the implicit assumption that the adjustment of the deviations towards the
long-run equilibrium is made instantaneously at each period. There are nevertheless
serious arguments in economic theory to invalidate this assumption of linearity.!?
Moreover, in the linear cointegration context, increases or decreases of the deviations
are deemed to be corrected in the same way. Again, several theoretical arguments
may contest this assumption, such as the presence of menu costs (Levy et al., 1997),
market power (Ward, 1982) or simply small country versus rest of the world effects.
Balke and Fomby (1997) introduce the concept of threshold cointegration.'! In their
nonlinear framework, the adjustment does not need to occur instantaneously but only
once the deviations exceed some critical threshold, allowing thus the presence of an
inaction or no-arbitrage band. While their work focused on the long-run relationship
representation, extension to a threshold VECM has been made by several authors,
the threshold effect being applied to the anticipations by the agents of interventionary
policy only to the error-correction term (Seo, 2006) or to the lags and the intercept
as well (Hansen and Seo, 2002). Moreover, spurious cointegration can occur when

there are breaks in the deterministic component (level or slope) of each time series

9Cointegration is a necessary condition for market efficiency but not a sufficient condition. A test for

serial correlation is needed to infer about market efficiency.
19 Among them, the presence of transaction costs is maybe the most noteworthy, as it implies that

adjustment will occur only once deviations are higher than the transactions costs, and hence adjustment
should not happen instantaneously and at each time. Financial theory predicts that even in highly liquid
markets a so-called band of no arbitrage may exist where deviations are too small for the arbitrage to be

profitable.
See Stigler (2010) for an updated survey on threshold cointegration.
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(Leybourne and Newbold, 2003) or in the variance of the innovation errors of each
time series (Noh and Kim, 2003).

A nonlinear VECM may be denoted as

Ay, = AX o (B) e if wa(B) <y
AX B fu 0w a(B) >y

with

/

X[—] = { ] WI*I(B) A)C,,1 e Axl,n }
where x; is a p-dimensional /(1) time series which is cointegrated with one (p x 1)
cointegrating vector B, w;(B) = P'x; is the 7(0) error-correction term, u, is an error

term, A1 and A, are coefficients matrices that describe the dynamics in each of the

regimes, and 7 is the threshold parameter.

The approach advocated by Balke and Fomby (1997) is to conduct a two-step
analysis: If linear cointegration is not rejected, tests for threshold cointegration with
linear under the null should be used. Failure of cointegration in the first step should
lead to the use of tests with no cointegration under Hp and threshold cointegration
under the alternative. As the null hypothesis of none cointegrating relations is not
rejected, we use the test developped by Seo (2006). The null hypothesis of no-linear
cointegration is tested against the alternative of threshold cointegration. This test is
superior to its precursors, such as those proposed by Balke and Fomby (1997) and
Hansen and Seo (2002), where the standard test for linear cointegration is used for
threshold cointegration.!” The test statistic, denoted supW, is the supremum of the
Wald test statistics for the null hypothesis, calculated from a grid of y values over its

parameter space. The statistic is denoted as

supW = supyr W, (Y) ®)

with 7 the threshold parameter. Seo (2006) proves that, under certain conditions, the

12 According to Seo (p.130, 2006), their approach is misleading and can cause substantial power loss.

13
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supW converges to a function of the Brownian motion, free from nuisance parame-
ters. For improved size and power properties in small samples, Seo (2006) proposes
the bootstrap based on residual resampling, which approximates the sampling distri-
bution of the supW statistic under the null. According to his Monte Carlo experiment,
the bootstrap test shows desirable size properties and high power, especially when the
sample size is as large as or more than 250. The result reported on Table 4 indicates

that the null hypothesis of no cointegration cannot be rejected.

Thus, we can conclude that the spot and futures log-returns do not seem to be
cointegrated.!> As the two series are I(1), we can estimate equation (4) to test the
speculative efficiency hypothesis. As heteroskedasticity was found in the spot and
futures prices (see Table 2), the models are estimated with the White heteroskedastic-
consistent standard errors. Estimates of equation (4) is presented in Table 5. The
results indicate that there is no evidence of a time-varying risk premiums (y = 0).
The null hypothesis 8 = 1 is rejected at the 5% level, implying that the futures prices
of maturity 2010 and 2011 do not seem to be the best forecasts of the future spot
prices. Nevertheless, the joint hypothesis of market efficiency and unbiasedness is
not rejected, meaning that futures prices of maturity 2010 and 2011 appear to be the
unbiased predictors of spot prices. '* The result of the joint test is not the same of the
futures series of maturity 2012. Indeed, the Wald test is rejected implying that futures
prices of maturity 2012 are not the best predictors of spot prices. Our findings suggest
that cointegration exists on the short term, not on the long-run. This phenomenon can
be a particularity of the carbon markets which operates by phases. Market participants
may consider 2012 as the end of the second phase and prefer waiting before taking any
decision about 2012.

Nevertheless, the acceptance of the restrictions on parameters (y and d) are not a

necessary and sufficient condition for market efficiency. The serial independence of

3Masih and Masih (2002) suggested that cointegration of commodity markets does not exist if there

is either a non-stationary risk premium or a non-stationary convenience yield.

14The joint test is more powerful than the individual tests.

14
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residuals is an important condition for market efficiency. Indeed, residual correlation
implies that spot prices rely on past spot prices in addition to current futures prices,
thus violating market efficiency. If the parameter restrictions and serial independence
of residuals are met, then the market is efficient and futures prices provide unbiased
estimates of future spot prices. The Breusch-Godfrey test is applied to check the
presence of serial correlation (Table 5) and indicates that the null hypothesis of no
serial correlation is rejected, which casts some doubt on the efficiency of the market.

As the two above conditions are not met, the market does not seem to be efficient.

4 Conclusion

This paper investigated the speculative efficiency hypothesis on CO, emission
allowance prices negotiated on Bluenext, by testing the joint hypothesis of market
efficiency and unbiasedness of futures prices. The unit root tests concluded that
spot and futures prices are non-stationary in levels but stationary in first-difference.
The spot and futures prices are tested for cointegration using both linear (Johansen,
1995) and nonlinear (Seo, 2006) tests following the approach proposed by Balke and
Fomby (1997). The results indicate the absence of linear and nonlinear cointegration
relationship between spot and futures prices. The speculative efficiency hypothesis
did not hold even if the restrictions on the parameters are not rejected because of the
existence of serial correlation of residuals.

Understanding the relationship between spot and futures prices is thus of crucial
importance for all participants in the carbon market. Carbon trading works only
if markets for carbon provide enough liquidity and pricing accuracy, i.e., markets
provide prices that are useful for hedgers and other users of carbon markets. The
efficiency of the CO, market is particularly important for emission intensive firms,
policy makers, risk managers and for investors in the emerging class of energy and
carbon hedge funds. If carbon markets are inefficient the policy implications are that
there is a greater role for regulation to improve information flows and reduce market

manipulation (Stout, 1995). It is imperative that policy makers address these issues

15
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during the eminent reviewing process, to ensure that the EU ETS evolves into a mature,

efficient and internationally competitive market.
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Table 1: Results of unit root tests

Data ERS NP1 NP2 KPSS KSS

Series in level

Spot data -0.220 -0.252 -0.217 1.431 -0.248
Dec10 Futures data -0.067 -0.072 -0.068 1.592 -0.294
Decl1 Futures data -0.152 -0.171 -0.148 1.633 -0.419
Dec12 Futures data -0.158 -0.183 -0.153 1.667 -0.366

Series in first-difference

Spot data -2.368 -10.044 -2.233 0.319 -3.194
Dec10 Futures data -2.791 -10.141 -2.739 0.298 -4.298
Decl1 Futures data -3.425 -10.164 -2.902 0.276 -3.667
Dec12 Futures data -3.355 -10.172 -2.926 0.249 -3.683
Critical value -1.94 -8.10 -1.98 0.463 -2.93

Notes: The unit root tests are the efficient tests of Elliott, Rothernberg and Stock (1996, ERS) and Ng and Perron
(2001, NP1 and NP2), the stationarity test of Kwiatkowski et al. (1992, KPSS), the nonlinear test of Kapetanios et al.

(2003, KSS). “ means significant at the 5% level.

Table 2: Statistical analysis of log-returns series

Data Obs.  Mean (%) SD Skewness  Kurtosis  ARCH(10)

Spot data 623 -0.076 0.026  -1.194**  4.733* 15.303**
Dec10 Futures data 623 -0.084 0.025 -0.130 4.735% 16.680**
Decl1 Futures data 623 -0.086 0.025 -0.131 4.836** 15.652**
Dec12 Futures data 623 -0.087 0.024 -0.143 4.939** 14.405**

Notes: The skewness and kurtosis statistics are standard-normally distributed under the null of normality distributed
*k

returns. ARCH(10) indicates the Lagrange multiplier test for conditional heteroscedasticity with 10 lags. ** means

significant at the 5% level. The futures data are the futures of maturity December 2010.
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Table 3: Test for deterministic components in VECM

Test statistic

Null hypothesis Decl0 Decll Decl2
Model 1 in model 2 -6.10 -4.75 -4.04
Model 2 in model 3 1.07 1.10 1.13
Model 3 in model 4 -6.76 -8.16 -8.34
Model 4 in model 5 2.15 2.75 3.70

Notes: The test statistic is asymptotically distributed as 2 with (p — r) degrees of freedom with p the lag length and

r the number of cointegration relationships. ** means significant at the 5% level.

Table 4: Cointegration tests

Hypotheses Johansen test
Dec10 Decll1 Decl12
t-stat  p-value t-stat  p-value t-stat  p-value

Lambda max test

r<0 421 0.59 4.36 0.57 4.36 0.57
r<l 0.11 0.79 0.27 0.67 0.41 0.59
Trace test

r<0 4.32 0.67 4.63 0.62 4.77 0.60
r<l 0.11 0.79 0.27 0.67 0.41 0.59

Seo test
Dec10 Decll Decl12
t-stat  p-value t-stat  p-value t-stat  p-value

no coint / threshold cointegration 20.71 1.00 18.09 1.00 18.93 1.00

Notes: ** means significant at the 5% level.
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Figure 1: Spot and futures price series in log-returns

35

30

25

20

15+

10 -

5

—r 1 v 1 T 1 T | 1 T+ 1 [ T T T T T [ T T T T T | T I
2008MO0O7 2009M01 2009MO07 2010MO0O1 2010MO7

— Futures Dec2010 prices —— Spot prices

35

30

25 -

20

15+

10

5 ——/FT"—"+—-7+7""7"+-+--+————
2008MO7 2009M01 2009MO07 2010MO1 2010MO7

— Futures Dec2011 prices —— Spot prices

35

30

25 -

20

15+

10 -

5

—r— 1 v 1 T 1t T |1 1 T T+ 1 [ Tt T T T T [ T T T T T | T T
2008MO0O7 2009M01 2009MO07 2010MO01 2010MO7

— Futures Dec2012 prices —— Spot prices

19




hal-00570307, version 1 - 28 Feb 2011

Table 5: Fama’s regression

Model Dec10

Y ) Wald BG

sSoveanie QS o g T
Decl1

Y ) Wald BG

A =yrafive LT L0 9w
Dec12

Y ) Wald BG

AS; =Y+AF +¢ —6.8810~%  0.09** 22772  2.93*
(0.50) (0.03) (0.00) (0.00)

Notes: ** means significant at the 5% level. BG represents the Breusch-Godfrey LM test for serial correlation. The

test statistic is asymptotically distributed as %> with p degrees of freedom where p represents the lag length.
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The EUA-sCER Spread: Compliance Strategies and Arbitrage
in the European Carbon Market

1. Introduction

The European Union Emissions Trading Scheme (EU ETS) is the EU's flagship climate
policy forcing industrial polluters to reduce their CO, emissions in order to help the
European Member States to achieve their Kyoto Protocol target (i.e. to reduce greenhouse
gas emissions on average by 8% with respect to 1990 levels). As an emissions cap,
industrial operators receive, in Phases I (2005-2007) and II (2008-2012) of the scheme, a
yearly allocation of European Union Allowances (EUAs), which represent the right to emit
one ton of CO, in the atmosphere." The compliance of industrial operators requests the
balance between verified emissions and allocated allowances. Besides, industrial operators
may cut the costs of reducing their emissions by using credits issued from the Kyoto
Protocol Clean Development Mechanism (CDM), called Certified Emissions Reductions
(CERs).? These CERs correspond to one ton of avoided CO, emissions in the atmosphere,
and may be obtained through projects development in non Annex-B countries of the Kyoto
Protocol that allow to reduce emissions compared to a baseline scenario. Once credits have
been issued by the United Nations’s CDM Executive Board they may be sold by project
developers on the market, and thus become secondary CERs (sCERs). The central goal of
this article is to study the price drivers of EUAs and sCERs, and to explain the evolution of
the price difference observed between these two assets (the EUA-sCER spread).

Even if both assets allow the emission of one ton of CO, in the atmosphere, we observe
the existence of a positive spread between EUA and sCER prices that may be due to the
partial fungibility between these two carbon assets. Indeed, to provide more flexibility to
carbon-constrained installations, the European Commission has allowed industries covered
by the EU ETS to use both assets for compliance. However, it has established a limit on the
use of CERs (primary or secondary) up to 13.4% of their allocation from 2008 to 2012 on
average. To comply with their emissions cap, industrial emitters may thus adopt various
strategies: (i) surrender EUAs (allocated either to the plant or to others plants of the same
company), (ii) reduce real emissions (either at the installation-level or abroad, using the
Kyoto Protocol’s flexibility mechanisms), (iii) buy EUAs or/and sCERs, (iv) borrow EUAs
from future allocation, (v) surrender banked EUAs from past allocation. Trotignon and
Leguet (2009) document that, in 2008, 96% of the surrendered allowances were EUAs, and
only 3.9% were SCERs.? The trade-offs between using EUAs or sCERs towards compliance

! For Phase III of the EU ETS starting in 2013, the main part of EUAs will be allocated to industrials though
auctioning. The power sector will have to buy 100% of its allocation, while sectors faced to international
competition and some carbon leakages will keep receiving a free yearly allocation.

? Emission Reduction Units (ERUs) generated through the Joint Implementation mechanism (JT) of the Kyoto
Protocol fall beyond the scope of this article, and are left for future research.
* Note 0.01% were ERUs. No CERs were used towards compliance before that period, due to the lack of

connection between the Kyoto Protocol’s International Transaction Log (ITL) and the EU ETS’
Community Independent Transaction Log (CITL).
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in the EU ETS depend on the limit of CERs which can be used for compliance, their
respective price trends, and the price difference between them. Carbon traders and brokers
are following closely the evolution of the EUA-sCER spread, which reflects the
uncertainties embedded in the development of both schemes. In theory, as the sCERs are
free of project delivery risks, the prices of EUAs and sCERs should be equal since they
represent the same amount of CO, emissions reduction (one ton). However, due to the limit

EANT3

of 13.4% on average of the credits surrendered, the SCERs’ “exchange rate” is smaller than
for EUAs, and therefore sCERs are discounted with respect to EUAs. This premium

represents the opportunity cost of using sCERs for compliance instead of EUAs.

Beyond prices, regulatory issues may also explain the variation of the spread between
these two carbon assets in the long run. First, with the European Energy Climate package,
the EU ETS is confirmed until 2020. However, the details concerning the import of CDM
credits within Phase III (2013-2020) are not known with certainty. Indeed, the European
Union establishes particular conditions of the emissions trading scheme in Phase III that are
dependent on the achievement of a post-Kyoto international agreement. Thus, there exists a
wide range of uncertainties arising around the status and recognition of CERs (both primary
and secondary) in a revised EU ETS beyond 2012. Second, carbon assets form another
class of commodities against which traders need to define specific hedging strategies
(Chevallier (2009), Chevallier et al. (2009)).

The existence of spreads between assets has been studied mainly on financial markets.
Collin-Dufresne et al. (2001) find that credit spread changes in the U.S. are mainly driven
by local supply and demand shocks. Manzoni (2002) characterizes the evolution of credit
spreads on the sterling Eurobond market by a cyclical behavior and persistent volatility
process. Zhang (2002) examines the predictive power of credit spreads from the corporate
bond market in the U.S., and supports Bernanke and Gertler’s (1989) credit channel theory
as the explanation for the strong forecasting ability of credit spreads. Codogno et al. (2003)
show that differentials between Euro zone government’s bond spreads may be explained by
banking and corporate risk premiums in the U.S. Ramchander et al. (2005) investigate the
influence of macroeconomic news on interest rates and yield spreads in the U.S. and they
find that Consumer Price Index, non-farm payroll figures, and Fed funds rate release
announcements have a significant influence on changes in these spreads. Gémez-Puig
(2006) highlights the importance of size and liquidity indicators in explaining sovereign
yield spreads following the European Monetary Union. Davies (2008) examines U.S. credit
spread determinants with an 85 year perspective. Based on cointegration techniques for the
determinants of credit spreads, he demonstrates that key causal relationships exist
independently across different inflationary environments. Liu and Zhang (2008) investigate
whether the value spread is a useful predictor of returns. They identify mixed evidence, as
two related variables, the book-to-market spread (the book-to-market of value stocks minus
the book-to-market of growth stocks), and the market-to-book spread (the market-to-book
of growth stocks minus the market-to-book of value stocks) predict returns but with
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opposite signs. Manganelli and Wolswijk (2009) further study the spreads between Euro
area government’s bond yields, and find that they are related to short-term interest rates,
which are in turn related to liquidity risk components.

Compared to previous literature, we provide the first empirical analysis of EUA and
sCERs drivers, and the determinants of the EUA-sCER spread during Phase II (2008-2012)
of the EU ETS. Mansanet-Bataller et al. (2007), Alberola et al. (2008), and Alberola and
Chevalier (2009) have already analyzed the price fundamentals of EUAs during Phase 1
(2005-2007) of the EU ETS, but not the drivers of EUAs or sCERs during Phase II.
Additionally, to our best knowledge, no previous empirical study has focused either on the
determination of sCERs drivers or on the arbitrage strategies consisting in buying sCERs
and selling EUAs (yielding net profits from the existence of the positive EUA-sCER
spread).

Our central results show that EUAs and sCERs share the same price drivers, i.e. these
emissions markets prices are mainly determined by institutional events, energy prices,
weather events, and macroeconomic variables. Moreover, EUAs are found to determine
significantly the price path of sCERs, by accounting for a large share of the explanatory
power of sSCERs prices. This result emphasizes that EUAs remain the main “money” in the
field of emissions market, which is exchanged broadly as the most liquid asset for carbon
trading. The trading of sCERs, while growing exponentially, is still mostly determined by
the fact that the EU ETS remains the largest emissions trading scheme to date in the world.*
This result also explains why sCERs are traded at a discounted price from EUAs: absent the
project risk which is characteristic of primary CERs, sCERs are still limited by the import
limit set within the EU ETS.

Regarding the EUA-sCER spread, our central contribution documents that variables
stemming from the market microstructure literature (such as volumes exchanged on each
emissions market, see Madhavan (2000) for a review) are the main drivers of the spread, in
addition to EUA price levels, institutional and macroeconomic variables, and forecast errors
on the delivery of primary CERs. The latter result may indicate that the EUA-sCER spread
is traded as a “speculative” product by market participants such as traders and energy
utilities companies, since it is possible to obtain a net benefit by simultaneously trading
EUAs and sCERs (when the price difference between these two assets is above a certain
profitability threshold). Taken together, our results indicate that while the fungibility
between emissions markets worldwide is quickly developing, there remain significant
opportunities for price arbitrage.

The remainder of the article is organized as follows. Section 2 details compliance
strategies in the EU ETS. Section 3 develops a cointegration analysis between EUAs and

* Note that this situation could change with the future developments from the U.S. federal cap-and-trade
scheme and other regional initiatives.
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sCERs prices. Section 4 reviews the main EUAs price drivers. Section 5 covers the specific
sCERs price drivers. Section 6 focuses on the determinants of the EUA-sCER spread.
Section 7 summarizes the article with some concluding remarks.

Compliance Strategies in the EU ETS

2.1.

This section briefly reviews background information on the EU ETS, which was
launched in 2005 according to the Directive 2003/87/EC to facilitate the EU compliance
with its Kyoto commitments. Phase [ was introduced as a training period during 2005-2007.
Phase II coincides with the commitment period of the Kyoto Protocol (2008-2012).
Phase III will cover the period 2013-2020. Around 11,000 energy-intensive installations are
covered by the scheme, which accounts for nearly 50% of European CO, emissions
(Alberola et al., 2009a, 2009b). Emissions caps are determined at the installation-level in
National Allocation Plans (NAPs). In what follows, we examine more closely EUAs and
CERs contracts, as well as their respective price developments.

EUAs and CERs contracts

On the one hand, EUAs are the default carbon asset in the EU emissions trading system.
They are distributed by European Member States throughout NAPs, and allow industrial
owners to emit one ton of CO, in the atmosphere. The supply of EUAs is fixed in NAPs,
which are known in advance by market participants (2.08 billion per year during 2008-
2012).°

On the other hand, CERs, which also compensate for tons of CO, emitted by their
owners, are much more heterogeneous than EUAs. Primary CERs represent greenhouse
gases emissions reductions achieved in non-Annex B countries of the Kyoto Protocol.
These certificates are issued by the United Nations Clean Development Mechanism
Executive Board (CDM EB). CDM projects may associate various partners (ETS
compliance buyers, Kyoto-bound countries, project brokers, profit-driven carbon funds,
international organizations such as the World Bank, etc.). CDM projects partnerships are
governed by emissions reduction purchase agreements (ERPAs).® The price of primary
CERs will depend on the risk of each project, and on its capacity to effectively issue

’ However on September 23, 2009, the European Court of First Instance (CFI) overruled the decision of the

European Commission concerning NAPs for the second period submitted by Estonia and Poland. The
Commission will explore two options: (/) issue a new decision based on “proper” criteria before
December 23, 2009; and (2) appeal the CFI ruling, on a point of law, before November 23, 2009. Six other
Eastern European countries may contest NAPs as well. In total, it represents a potential additional 162
million allowances.

% The ERPA basically sets forward the duties and rights of the partners. Among the rights of the partners is the

right to receive a pro rata quantity of the primary CERs.
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primary CERs. This price will be the cost of the project divided by the number of primary
CERs actually issued. Thus, primary CERs from different projects will have different
prices.

Once issued by the CDM EB, primary CERs may either be used by industrial firms for
their own compliance, or sold to other participants in the market. In the latter case, it
becomes a secondary CER (sCER). Note that as the sCERs are CERs that have been
already issued by the CDM EB, their project delivery risk is null. As stated in the
introduction, the main difference between the use of EUAs and CERs (including both,
primary and secondary) for compliance in the EU ETS lies in the 13.4% (on average)
import limit set by the European Commission on CERs, while EUAs may be used without
any limit. The CERs import limit for compliance is equal to 1.4 billion tons of offsets being
allowed into the EU ETS from 2008-2012.”

In this article we focus on the price relationships between EUAs and sCERs. Next, we
describe the EUAs and sCERs price developments.

2.2. Price development

In this section, we examine Phase Il EUA and sCER prices, which reflect the price of
reducing emissions during the commitment period of the Kyoto Protocol (2008-2012).* The
sCER price series used for this study is the longest historical price series existing for
sCERs: the sCER Price Index developed by Reuters. It has been built by rolling over two
sCERs contracts with different maturity dates (December 2008 and December 2009).
Similarly, we have rolled over EUA futures contracts traded at the European Climate
Exchange (ECX) of the corresponding maturity dates (December 2008 and December
2009) to match them with the SCER price series.” The sample period considered starts with
the beginning of the SCER Price Index (March 9, 2007) and ends on March 31, 2009. As
shown in Figure 1, the EUA and the sCER price series follow a similar price path.

7 In the absence of a satisfactory international agreement, installations subject to allowances during Phase III
will only be able to use the credits left over from Phase II (2008-2012), or a maximum amount
corresponding to 11% of the Phase II allocation. These measures are equivalent to capping the potential
demand for Kyoto credits to 1,510 Mt between 2008 and 2020. If a post-Kyoto international agreement is
achieved, the ceiling on the use of credits from project mechanisms towards the compliance of EU ETS
installations will be raised to 50% of the additional reduction efforts. Beyond this issue, the introduction of
a new international agreement on climate change would introduce “high quality” as a condition for project
credits coming from countries which have signed the international agreement. This would translate into a
reduced supply of credits originated from project mechanisms to EU ETS compliance buyers.

¥ Note that banking and borrowing of allowances are allowed within Phases II and III of the EU ETS, contrary
to Phases I and II (Alberola and Chevallier (2009)).

? Carchano and Pardo (2009) analyse the relevance of the choice of the rolling over date using several
methodologies with stock index future contracts. They conclude that regardless of the criterion applied,
there are not significant differences between the series obtained.
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EUAs were traded at €15 in March 2007, then stayed in the range of €19-25 until July
2008, and decreased steadily afterwards to achieve €8 in February 2009. sCERs started at
€12.5 in March 2007, evolved in the range of €12-22 through July 2008, and continued to
track EUA prices until €7 in February 2009. Thus, sCERs have always remained below
EUAs and consequently the spread has been positive during all the sample period.

Figure 1: Time-series of ECX EUA Phase Il Futures, Reuters CER Price Index,
and CER-EUA Spread from March 9, 2007 to March 31, 2009
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Descriptive statistics for EUAs, sCERs, and the spread may be found in Table 1. Given
the price paths observed in historical data, it appears interesting to investigate the presence
of one cointegrating relationship between EUAs and sCERs in the next section.

Table 1: Summary statistics for all dependent variables

Variable Mean Median Max Min Std. Dev Skew. Kurt
Raw Prices series

EUA, 20.40389 21.52000 29.33000 8.20000 4.459218 -0.765966 3.031938
sCER; 15.85798 16.6875 22.8500 7.484615 2.986495 -0.351494 3.135252
Spread; 4.545912 4.620000 9.043571 0.647857 2.108445 0.047792 2.292397
Nathural Logarithms

EUA, 2.986643 3.068983 3.378611 2.104134 0.255164 -1.323179 4.275898
sCER; 2.743941 2.776476 3.128951 2.012850 0.505511 -0.994736 4.182189
Log returns

EUA -0.000437 0.0001 0.113659 -0.094346 0.026833 -0.060828 4.868026
sCER; -0.000309 0.0001 0.112545 -0.110409 0.024441 -0.370323 5.961950
VAR(4) Residuals

EUA, 0.00001 0.001242 0.108251 -0.094873 0.05903 -0.052333 4.522629
sCER; 0.00001 0.000390 0.111584 0.097672 0.023742 -0.309379 5.520998
First-differences

A Spread -0.002219 -0.010179 1.070000 -1.740000 0.295605 -0.368420 6.262861

Note: EUA, refers to ECX EUA Futures, sCER, to Reuters sCER Price Index, and Spread, = EUA~sCER, spread.
Std.Dev. stands for Standard Deviation, Skew. for Skewness, and Kurt. for Kurtosis. The number of observations is
529. The VAR(4) specification is detailed in Section 2.3.
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Cointegration Analysis

3.1.
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Following the methodology used in Manzoni (2002) and Ramchander et al. (2005), who
studied the relationship between bond spreads, we proceed in a first step by identifying the
possible cointegration relationship between the two types of assets considered (EUAs and
sCERs). We will then analyze the EUA-sCER spread drivers.

Unit Roots and Structural Break

A necessary condition for studying cointegration involves that both time-series are
integrated of the same order. We thus examine the order of integration, noted d, of the time-
series under consideration based on Zivot and Andrews’ (1992) unit root test. This test
allows examining the unit root properties of the time-series, while simultaneously detecting
endogenous structural breaks for each variable. Figure 2 presents the Zivot-Andrews unit
root test statistics for the two EUA and sCER variables transformed to log-returns.

Figure 2: Zivot-Andrews (1992) Test Statistic for the EUA (left) and sCER (right)
Variables
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The model estimated is a combination of a one-time shift in levels, and a change in the
rate of growth of the series. The null of unit root is clearly rejected in favour of the break-
stationary alternative hypothesis. One estimated break point is identified for each of the
time-series: February 13, 2009 for the EUA variable, and February 20, 2009 for the sCER
variable. These breakpoints may be due to a delayed effect of the “credit crunch” crisis on
the carbon market (see Chevallier (2009) for a discussion). Both time-series are integrated
of order 1 (/(1)). The existence of a structural break in the time-series considered, while

10




The EUA-sCER Spread: Compliance Strategies and Arbitrage
in the European Carbon Market

remaining stationary, means that we need to develop cointegration tests that explicitly
include potential breaks, as they have been developed by Lutkepohl et al. (2004).

3.2. VECM and Structural Break

After having validated the necessary condition for studying cointegration (which
involves that both time-series should be integrated of the same order), we investigate the
existence of a long-term relationship across these two carbon prices by employing a
cointegration analysis with the maximum-likehood test procedure established by Johansen
and Juselius (1990) and Johansen (1991). Results for the cointegration test with one
structural shift at unknown time (Lutkepohl et al (2004)) are shown in Panel A of Table 2.
The trace statistic result indicates a cointegration space of » = 1, given a 5% significance
level. We may conclude that there exists one long-term cointegrating vector between the
EUA and sCER variables taken in natural logarithm form.

Table 2: Johansen Cointegration Rank Trace Statistic, Cointegration Vector,
Model Weights and VECM with Structural Break for the EUA and the CER
Variables.

Panel A: Johansen Cointegration Rank Trace Statistic

Hypothesis Statistic 10% 5% 1%
r<1 5.26 5.42 6.79 10.04
r=1 16.95 13.78 15.83 19.85

Panel B: Cointegration Vector

Variable EUA (1) sCER (1)
EUA (1) 1.0000 1.0000
sCER (1) -0.4955009 -1.519945
Panel C: Model Weights
Variable EUA (1). sCER (1)
AEUA -0.06163548 0.00734759
AsCER -0.04490726 0.0182197

Panel D: VECM with Structural Break (r = 1)

Variable AEUA AsCER
Error Correction Term (ect) -0.0197908 -0.0282009
Deterministic constant 0.0106349 0.0154190
Lagged differences
AEUA (1) -0.0641515 -0.0504123
AsCER (1) 0.2307197 0.1423340

Note: EUA refers to ECX EUA Phase Il Futures, sCER to Reuters sCER Price Index, transformed to natural
logarithms. Critical values are reported in Lutkepohl et al (2004). Lag order in parenthesis. The number of

observations is 529.
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Next, we proceed to the estimation of the Vector Error Correction Model (VECM),
which is useful in making causal inferences among the variables of our system.'® As shown
in Panel D of Table 2, the coefficients of the error correction terms for the EUA and sCER
variables are negative, and thus we validate the error correction specification. In terms of
short-run dynamics, the error correction terms emerge as important channels of influence in
mediating the relationship between the different EUAs and sCERs prices. We notice in
Panel D of Table 2 that the error correction term appears stronger for sCERs than for
EUAs. This implies that the sCER variable has a stronger behavior to adjust to past
disequilibria by moving towards the trend values of the EUA variable. This specification
confirms that EUAs constitute a leading factor in the price formation of sCERs. It can also
be seen that changes in the respective prices of EUAs and sCERs have a significant causal
influence (in the Granger sense) on each other."!

3.3. VAR(p) Modeling

In light of the previous results, and in order to proceed with the suitable identification
of the price drivers for each variable, we use a VAR(p) in differences with an intervention
dummy for February 2009 to model the data-generating process of the EUA and sCER log-
series. The VAR(p) model is specified as follows:

Ay, = Ay + 4Dy, + Ay +. A ANy, + &

AEU4, | . b .
Where Ay, = " | is a vector of EUA and sCER log-returns, 4,=| '’ | is a vector
AsCER, by

711 712

of constants, and 4, :{
V21722

} , etc. are the coefficient matrices.

To determine the appropriate lag structure, we computed the following information
criteria: Akaike (4/C(n)=4), Schwarz (SC(n)=1), Hannan-Quinn (HQ(n)=1), and Final
Prediction Error (FPE(n)=4). Since the Ljung-Box-Pierce Portmanteau test on the residuals

' The VECM is specified as follows:
Ay, = Ay + A Ecm,_| + A, Ay, + ¢

AEU4, | . . . | bwo
is a vector of first differences of EUA and sCER prices, 4, = b

AsCER,

Where Ay, :{
20

} is a vector

bll

of constants, 4, :{ } is a vector measuring the speed of the adjustment to the long-run relationship,

21

711 712
V21722

" These results are not reproduced in the article to conserve space, and may be obtained upon request.

and 4, = { } is a coefficient matrix.
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of the VAR(1) model indicated the presence of autocorrelation, we choose to retain a lag of
order p = 4. As shown in Table 3, residuals are not auto-correlated for the VAR (4) model.

Table 3: Diagnostic test of VAR(4) Model

Test Statistic D.F. p-value
Portmanteau 57.4878 48 0.16
ARCH VAR 97.1946 9 0.01
JB VAR 147.6817 4 0.01
Kurtosis 143.5005 2 0.01
Skewness 4.1811 2 0.12

Note: Portmanteau is the asymptotic Portmanteau test with a maximum lag of 16, ARCH VAR is the
multivariate ARCH test with a maximum lag of order 5, JB is the Jarque Bera Normality test for multivariate series
applied to the residuals of the VAR(4). Kurtosis and Skweness stand for separate tests for multivariate skewness and
kurtosis. D.F. stands for degree of freedom of the test statistic.

The ARCH effect is very strong, which indicates the necessity to use a GARCH model
for further analysis. Figure 3 plots the log-returns and the VAR(4) residuals of the ECX
EUA Phase II Futures and sCER Price Index time price series.

Figure 3: Log-returns (left) and VAR(4) residuals (right) of ECX EUA Phase 11
Futures and Reuters sCER Price index for the sample period from March 9, 2007 to
March 31, 2009
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Figure 4 shows the OLS-based CUSUM tests for the VAR (4) residuals. Despite some
structural instability around the February 2009 breakpoints, the residuals stay within the
interval confidence levels.
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Figure 4: OLS-CUSUM Test for the EUA (left) and sCER (right) Variables of the
VAR(4) Model
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Additional impulse response analysis reveals the traditional “hump” shape between
EUAs and sCERs, as shocks pass on both variables and fluctuations dampen at the horizon
of 10 lags.'? The variance decomposition indicates that the variance of the forecast error for
the EUA price is due to its own innovations up to 90%. For the sCER price, the variance of
the forecast error is due to EUAs up to 70%, and only 30% to its own innovations. These
results confirm our findings in Section 2.2.

In the next step of our empirical analysis, we proceed by fitting a suitable GARCH
model to the residuals of the VAR (4) model for the EUA and sCER variables.

EUASs Price Drivers

In this section, we focus on the drivers of EUAs using the residuals of the VAR(4)
model. As detailed in previous literature, we may distinguish between factors determining
the supply and demand of EUAs. The supply of EUAs is fixed by the European
Commission in National Allocation Plans that are validated after negotiation between
Member States and national industrials covered by the scheme. Announcements relative to
the strictness of NAPs have been shown to have a strong influence on EUA prices
(Alberola et al. (2008), Chevallier et al. (2009), Mansanet-Bataller and Pardo (2009)).
Concerning demand factors, previous literature identifies energy prices, weather events, and
the level of industrial production as being the main drivers of EUAs during Phase I
(Mansanet-Bataller et al. (2007), Alberola et al. (2009a, 2009b).

2 These results are not reproduced here to conserve space, and may be obtained upon request.
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Database

We include as EUAs price drivers the most representative energy prices in Europe. That
is, the daily Brent and natural gas futures prices traded at the International Petroleum
Exchange (IPL) and coal prices CIF ARA." The time-series have been built by rolling over
the nearest month ahead contract. As the futures contract on Brent is quoted in US$ per
barrel, the futures contract on Natural Gas is quoted in GBP per therm, and the coal
contract is quoted in US$ per metric ton, we have converted all price series to Euro by
using the daily exchange rate data available from the European Central Bank.'" Figure 5
shows these energy prices.

Figure 5: IPE Crude Oil Brent, IPE Natural Gas, and Coal CIF ARA Prices from
March 9, 2007 to March 31, 2009
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Source: Reuters

" CIF ARA defines the price of coal inclusive of freight and insurance delivered to the large North West

European ports, e.g. Amsterdam, Rotterdam or Antwerp.

4 Data available at http://www.ecb.int/stats/exchange/eurofxref/html/index.en.html
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Besides, we use the CO, switch price between coal and gas in €/ton, as computed in the

Tendances Carbone database.'’ This variable represents the fictional daily price that

establishes the equilibrium between the Clean Dark Spread and the Clean Spark Spread.'®

It therefore represents the price of CO, above which it becomes profitable in the short term

for an electric power producer to switch from coal to natural gas. The economic logic

behind the use of these spreads lies in the central role played by power producers in the

determination of the EUA price, since they receive around half of the allowances

distributed in the EU emissions trading system (Delarue et al. (2008), Ellerman and
Feilhauer (2008)). The CO, switch price, Clean Dark and Clean Spark Spreads are
displayed in Figure 6.

Figure 6: Clean Dark Spread, Clean Spark Spread, and Switch Price from March

9, 2007 to March 31, 2009
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Source: Reuters

' Tendances carbone is a monthly newsletter on the EU ETS, produced by the Caisse des Dépots, Mission
Climat the research team of CDC Climat department which is in charge of finance carbon activities. It can
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be found at http://www.caissedesdepots.fr/missionclimat

Note that the Clean Dark Spread represents the difference between the price of electricity at peak hours
and the price of coal used to generate that electricity, corrected for the energy output of the coal plant. The
Clean Spark Spread represents the difference between the price of electricity at peak hours and the price
of natural gas used to generate that electricity, corrected for the energy output of the gas-fired plant. Both
spreads are expressed in €/ MWh.
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To take into account weather influences, we use the Tendances Carbone European
temperatures index, which is an average of national temperatures indices of four European
countries (France, Germany, Spain and the United Kingdom), weighted by the share of
each National Allocation Plan. From this index, we have created three new variables:
tempec represents the difference between the value of the temperatures index and the
decennial average; femphot is a dummy variable for extremely hot temperatures (equal to 1
if the value of the temperatures index is higher than the third quartile of the series, and 0
otherwise); and fempcold is a dummy variable for extremely cold temperatures (equal to 1
if the value of the temperatures index is lower than the first quartile of the series; and 0
otherwise). The temperatures index and its deviation from decennial average are shown in
Figure 7.

Figure 7: European Temperatures Index and Deviation from Decennial Average
from March 9, 2007 to March 31, 2009
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Source: Mission Climat Caisse des Dépots

We have also introduced exogenous variables impacting CO, emissions levels. First, we
consider the Tendances Carbone European Industrial Production index indicator, which
uses Eurostat production indices and is a backward-looking indicator tracking past
economic trends. Second, we use the Economic Sentiment Index published by Eurostat,
which reflects overall perceptions and expectations at the individual sector level in a single
aggregate index. This index is a forward-looking indicator used to mirror economic sectors’
sentiment. Finally, the “credit crunch” crisis may also have an impact on CO, emissions
levels. To detect this potential influence, we have created the variable crisis as a dummy
variable equal to 1 from August, 17 2007 onwards and 0 otherwise. This date corresponds
to the first cut in interests rates by the U.S. Federal Reserve, and may be considered as the
beginning of the financial crisis (Chevallier (2009)). Figure 8 shows the European
Industrial Production Index and the European Sentiment Index variables.
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Figure 8: Tendances Carbone Industrial Production Index (Weighted by the Share
of NAPs) and EU Economic Sentiment Index

PRED MG i s

Iroex (Basa 1 00s yoar 20000

" L L anl I i I i I
ARETDT JuLe? DECOT MAYIE SEPOR FEBD® MaRa7 JuLer DECO? MAYCR SEPCB FE@oe

Source: Mission Climat - Caisse des Dépéts, Eurostat.

Additionally, we consider three other variables relevant to market trends. First, to take
into account the slope of the Euro area yield curve, we have used the yield variable, which
is available from the European Central Bank.'” This series is built as the spread between the
5- and the 2-year interest rates. A positive (negative) value of the variable yield is expected
to indicate an upward-sloping (downward-sloping) interest rate term structure, and hence a
trend to cool down (stimulate) the economy (Collin-Dufresne et al. (2001)). Second, we
have computed the momentumpgy, variable. This variable represents the difference between
ECX EUA Phase II Futures prices at time ¢ and at time #-5, thereby indicating bullish or
bearish carbon market trends. Finally, VIX is the volatility index published by the Chicago
Board Options Exchange (CBOE), which is widely recognized as an indicator of aggregate
market volatility among financial practitioners (Collin-Dufresne et al. (2001)). Figure 9
presents the evolution of the three variables.'®

17 Data can be found at : http://sdw.ecb.curopa.eu

'8 Note we leave for further research the investigation of other potential explanatory variables, such as EUA
forward curves and the return on investment for EUAs growing at the EURIBOR rate.
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Figure 9: Slope of Yield Curve, Market Momentum, and VIX Index from March
9,2007 to March 31, 2009
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Regarding news variables that may impact the supply of EUAs, we consider three types
of events. First we take into account the arrival of new information concerning Phase 11
NAPs. Second, we consider news related to the extended development of the EU ETS
during Phase III. These two dummy variables have been constructed by filtering the most
reliable and significant announcements on EU ETS developments from the European
Commission website.'” Third, we also take into account the likely impact on EUA prices
provoked by the connection between the Kyoto Protocol’s International Transaction Log
(ITL) and the EU ETS’ Community Independent Transaction Log (CITL) on October 10,
2008 throughout the ITL-CITL dummy variable. This variable takes the value of 1 when
news concerning the connection occurred and 0 otherwise.

After transforming, when necessary, the exogenous variables of our database into
stationary variables, we detail in the next section the GARCH modelling for the EUA
variable.

' Those announcements are presented in Annex 1. They have been obtained from the European Commission
website: http://ec.europa.eu/environment
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4.2. GARCH Modeling

We model the EUA variable by using the asymmetric TGARCH (p,g) model by
Zakoian (1994) with a Student’s ¢ innovation distribution, estimated by Quasi Maximum
Likelihood with the BHHH algorithm:

EUA, = a + pbrent, + ycoal, + dgas, + Eswitch, + gtempec, + ptemphot, + ytempcold,
+nMCprod, + @EUESI, + wield, + kmomentumpgy,,, + Acrisis, + $VIX,
+ uEUETSphaselll, + ONAPphasell, + VITL _CITL, + ¢,

O, =0y + 05+(L)5t+—1 —af(L)ng—l + ﬂ(L)O_t—l

with EUA, the residuals of the VAR(4) model related to the EUA at time 7, a the
constant, brent,, coal,, and gas, are the returns of the brent, coal and gas series, switch, the
switch variable, tempec,, temphot, tempcold, the temperatures variables, MCprod, the
industrial production index from Tendances Carbone, EUESI, the EU Economic Sentiment
Index, yield, the slope of the Euro area yield curve, momentumgy,, the momentum variable
concerning the EUA market, crisis; the dummy variable accounting for the “credit crunch”,
ViX, the CBOE volatility indicator, EUETSphaselll, the dummy variable for Phase III news,
NAPphasell, the dummy variable for Phase Il news, /TL CITL, the dummy variable for the
ITL-CITL connection, ¢, the error term, o, the conditional volatility, the subscript index ¢

refers to date 7. (L)s;, and (L)e;, are the positive and negative errors of the mean equation
lagged one period respectively, and (L), , is the conditional volatility lagged one period.

Note that in this model (L)s,;, and (L)s,, capture asymmetric effects.

4.3. Estimation results

By estimating the TGARCH model presented in Section 3.2 and removing one by one
non-significant exogenous variables, we are able to identify two different sets of regression
results. In Table 4, regression (1) includes the main energy variables, while regression (2)
contains the swifch and other market variables. The quality of the regressions is verified
following several diagnostic tests: the Adjusted R?, the Log-Likelihood ratio, the ARCH
Lagrange Multiplier (LM) test, the Ljung-Box Q-test statistic with a maximum number of
lags of 20 (Q(20) statistic), the Akaike Information Criterion (AIC) and the Schwartz
Criterion (SC). For both models, the Ljung-Box-Pierce test indicates that residuals are not
autocorrelated, and the Engle ARCH test indicates that heteroskedasticity is adequately
captured by the structure of the TGARCH model. Besides, we have investigated the
presence of multicolinearity by computing the matrix of partial cross-correlations and the
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inflation of variance between explanatory variables.”” These calculations did not reveal
serious problematic multicolinearities.

Table 4: TGARCH (1,1) Regression Results for the EUA Price Drivers

Variable EUA,
(1) @

Constant 0.0008 0.0011

(0.0008) (0.0008)
Brent, 0.0013%**

(0.0003)
Coal, -0.0017%***

(0.0003)
Gas; 0.0003%**

(0.0001)
Switch, 0.0006***

(0.0002)

Momentumgyag 0.0082%** 0.0083%*%*

(0.0007) (0.0007)
NAP phase II; -0.0084* -0.0095*

(0.0044) (0.0049)
Adjusted R? 0.1916 0.1631
Log-Likelihood 1287.749 1274.906
ARCH LM Test 0.7950 0.6360
Q(20) Statistic 26.789 24.322
AIC -4.7811 -4.8243
SC -4.9667 -4.7673
N 529 529

Note: EUA, refers to the residuals of the VAR(4) model related to the EUA (ECX EUA Phase II Futures).
*¥EE (¥%) (*) Denotes 1%,(5%),(10%) significance levels. The quality of regressions is verified through the following
diagnostic tests: the adjusted R-squared (Adjusted-R?), the Log-Likelihood, the ARCH Lagrange Multiplier (ARCH
LM Test), the Ljung Box Q-test statistic with a maximum number of lags of 20 (Q(20) statistic), the Akaike
Information Criterion (AIC), and the Schwarz Criterion (SC). The 1% (5%) critical value for the Ljung-Box
portmanteau test for serial correlation in the squared residuals with 20 lags is 37.57 (31.41). N is the number of
observations.

In regression (1), we observe that energy variables have an impact on the EUA variable
at statistically significant levels, which is conform to previous literature (Mansanet-Bataller
et al. (2007), Alberola et al. (2008)).2' Brent and gas have a positive impact on EUA price
changes: increases in fuel prices are directly transmitted to the CO, allowance market. As
the most CO,-intensive fuel, coal has a negative impact on CO, prices. This implies that
when the coal price increases, industrials have an incentive to use less CO,-intensive fuels,
which decreases the demand and the price of CO, allowances. In regression (2), we uncover
the influence of two other variables: momentumgy, is positive and statistically significant at
the 1% level, while the dummy variable NAP Phase II is negative and statistically
significant at the 10% level. The sign of the latter variable is conform to our expectations:

%% This table is not reproduced here to conserve space, and may be obtained upon request.

2 Note that the energy variables are considered here as contemporaneous variables. Including lags did not
fundamentally change the results obtained.
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NAPs II allocations were reduced by 10% compared to NAPs I. This stricter constraint did
not impact positively EUAs due to the context of the economic crisis, which was reflected
primarily in the decrease of production outputs (and as consequence in reduced CO,
emissions from EU ETS installations). The positive sign of momentumgy, may be explained
by the fact that EUA price changes responded positively to carbon market trends during our
study period.

In regression (2), we uncover the explanatory power of the switch variable at the 1%
level. Its positive sign confirms that when the coal price increases, it becomes more
profitable for power operators to switch from coal to natural gas including CO, costs. Both
the momentumgy, and NAP Phase I variables are also significant with similar coefficients
and signs as in regression (1), which confirms the robustness of our previous estimates.
Having reviewed the main price drivers of the EUA variable, we extend in the next section
our investigation to the fundamentals of sCERs.

5. SCER Price Drivers

We focus in this section on the modeling of the sCER variable defined as the residuals
of the VAR(4) model for the sCERs.”> To our best knowledge, this constitutes the first
empirical analysis of SCER price drivers.

5.1. Exogenous variables

As for EUAs, it is important to distinguish between demand and supply factors
affecting sCERs. Contrary to the allocation of EUA, the supply of sCERs is unknown. The
main sources of uncertainty are due to the fact that (i) the supply of primary CERs is
unknown and difficult to estimate (as it depends on several risks related to the issuance of
primary CERs); and (i7) the amount of primary CERs that will be converted into sCERs is
also difficult to assess (see Trotignon and Leguet (2009). On the demand side, whereas on
the EU ETS the demand comes from private financial or industrial operators, for sSCERs the
demand comes from a larger number of participants (investors, industrials and Annex-B
countries). Most of the CERs demand to date comes from European industrials, which are
limited to 13.4% (on average) of surrendered allowances for compliance during Phase II of
the EU ETS. Besides, Annex-B countries of the Kyoto Protocol may also use CERs for
compliance. Countries with a potential deficit of Assigned Amount Units (AAUs valid
under the Kyoto Protocol) in 2012 - such as Japan - are involved in sCERs purchasing.
Among other factors that may impact SCERs prices, we identify the same factors as those
affecting EUAs prices, since both assets may be used for compliance in the EU ETS.

22 Note that as the drivers of primary and secondary CER are not the same, it is important to remind here that
we are considering secondary CER prices.
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Hence, we consider the same explanatory variables as for EUAs in sCERs pricing. That is,
energy prices (brent, gas and coal), the swifch price variable, temperatures variables,
variables related to production levels, market volatility, and dummy variables related to the
announcements concerning the status of the CDM in Phase III of the EU ETS and the ITL-
CITL connection. Note that we have computed a new specific variable, called
momentumscgr, for the indication of bullish and bearish periods. Similarly to the case of the
momentumpgyy variable, the momentumycpr variable is obtained as the difference between
the sCER variable at time ¢ and at time #-5.

Besides, we add three variables that take into account the specificities of SCERs (mostly
related to the supply side): (i) CDM EB meeting, (ii) linking, and (iii) CDMpipeline.

The dummy variable CDM EB meeting is equal to 1 on the publication date of CDM
EB’s reports, and 0 otherwise. This variable indicates the arrival of new information from
the United Nations’CDM Executive Board. The dummy variable /inking is equal to 1 when
there on the announcement date related to the linking of emissions trading schemes
worldwide, and 0 otherwise.”

Finally, the CDMpipeline variable is the forecast error concerning the number of
primary CERs actually delivered by the CDM EB. Each month, the UNEP Risoe announces
how many primary CERs are expected to be delivered in the CDM Pipeline.** This variable
is computed following the approach developed by Kilian and Vega (2008):

CDMpipeline, = Realised, — Expected,

A

o

With Realised, the announced value of the amount of primary CERs delivered by the
UNEP Risoe, Expected, the market’s expectation of the amount of primary CERs to be
delivered prior to the announcement, calculated by Trotignon and Leguet (2009), and

6 the sample standard deviation of the “unexpected” component. Figure 10 shows the

forecast errors for the number of primary CERs available in the CDM pipeline.

2 Please see Annex I for detailed information on both data.
24 Available at : http://cdmpipeline.org
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Figure 10: Forecast errors for the number of CERs available in the CDM Pipeline
from May 2008 to March 2009
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5.2.  GARCH modeling

We model sCER prices by following the same methodology as for EUA Phase II
Futures prices:

sCER =a+ pbrentt + ycoal L+ ogas P+ é‘ﬁswitcht + ¢tempect + ¢7temphott + ptempcold A
+ nMCprodt + wEUESIt + zyieldt +Kmomentum  ~pp. + ﬂcrisist + SVIXZ
+ uEUETSphaselll P VITL CITL ;T nCDMpipeline, + SCOMEBmeeting,

+vlinking, + &,

o, =q +a+(L)gt+_l —a_(L)gl__l +,6’(L)O't_l

with sCER, are the residuals of the VAR(4) model related to the sCERs at time ¢,
momentumscgr, CDMpipeline,, CDMEBmeeting,, and linking, exogenous variables specific
to sCERs defined as above. Other variables have been defined previously for the EUA
variable.

5.3. Estimation results

Estimation results are presented in Table 5. The quality of the regressions (3) to (5) is
verified with the same diagnostic tests as for EUAs. All diagnostic tests are validated for
regressions (3) to (5).

In regression (3), we observe that energy prices (brent, coal lagged one period, and gas)
have a statistically significant impact on sCER prices with the same signs as for EUAs.
This first result confirms that EUAs and sCERs share basically the same price fundamentals
with respect to the interaction with energy markets.
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In regression (4), momentum,cgg, and linking are statistically significant at the 1% and
10% levels, respectively. The sign and interpretation of momentumgcgg, is similar to
momentumgyy; in the case of the EUA variable.

The positive sign of /inking suggests that news about the future connection between the
European and international credits carbon markets tend to increase sCERs prices. Note that
sCERs are fungible across regional and domestic markets. Thus, this positive sign is
coherent with what we would expect: as the global demand of sCERs increases, the price of
sCERs also increases.

In regression (5), we note that CDMpipeline is not significant in explaining sCERs
price changes. This result is conforming to the view that sCERs have distinct fundamentals
from the delivery of primary CERs, since they are free of project delivery risk.

Table 5: TGARCH (1,1) Regression Results for the sCER Price Drivers

Variable sCER,
(3) ©) (5)
Constant 0.0008 0.0007 0.0007
(0.007) (0.0007) (0.0013)
brent, 0.0009%** 0.0005*
(0.0002) (0.0003)
coaly 0.0008%** -0.0017%**
(0.0001) (0.0003)
gas, 0.0002%%** 0.0002*
(0.0001) (0.0001)
momentumcgg, 0.0093** 0.0098%***
(0.0009) (0.0009)
Linking, 0.0194*
(0.0111)
CDM pipeline, 0.0005
(0.0013)
Adjusted R? 0.1582 0.1427 0.0469
Log-Likelihood 1344.581 1339.208 660.743
ARCH LM Test 0.9195 0.9730 0.7560
Q(20) Statistic 25.137 24.396 20.724
AIC -5.1074 -4.8026 -4.5827
SC -5.0341 -4.7783 -4.4542
N 529 529 529

Note: sCER, refers to the residuals of the VAR(4) model related to sCERs (Reuters sCER Price Index).
*EE (k%) (%) Denotes 1%,(5%),(10%) significance levels. The quality of regressions is verified through the following
diagnostic tests: the adjusted R-squared (Adjusted-R®), the Log-Likelihood, the ARCH Lagrange Multiplier (ARCH
LM Test), the Ljung Box Q-test statistic with a maximum number of lags of 20 (Q(20) statistic), the Akaike
Information Criterion (AIC), and the Schwarz Criterion (SC). The 1% (5%) critical value for the Ljung-Box
portmanteau test for serial correlation in the squared residuals with 20 lags is 37.57 (31.41). N is the number of
observations.
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Having detailed separately EUAs and sCERs price drivers, we now turn to the
determinants of the price difference between these two emissions assets.

6. EUA-sCER Spread drivers

Following the analysis of EUAs and sCER price drivers, we focus in this section on the
variables that may have an explanatory power for the evolution of the EUA-sCER spread
defined as follows:

Spread, = EUA, — sCER,

With EUA, and sCER, respectively, the EUA (ECX EUA Phase II Futures prices) and
sCER (Reuters sCER Price Index) rolled-over futures contract prices.”> The EUA-sCER
spread is pictured at the bottom of Figure 1. Given its construction, the spread is positive. It
is equal to €2 in March 2007, €8 in May 2007, and evolves in the range of €2 to €6 until
May 2008. It becomes then relatively close to zero until March 2009. Thus, the spread
seems to widen (narrow) depending on bullish (bearish) periods on emissions markets. In
Figure 11, we observe that the EUA-sCER spread taken in stationary first-difference
transformation exhibits volatility clustering from May to September 2008, and that the
volatility decreases near the end of the sample period.

Figure 11: First-difference of the EUA-sCER Spread from March 9, 2007 to
March 31, 2009
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» Note that ECX has implemented a sCER-EUA trading facility that allows trading the spread at reduced
transaction costs. To facilitate the understanding of the determinants of the spread, we have chosen the
more intuitive definition of the Spread = EUA-sCER, which has the advantage to be positive over the
sample period.
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The EUA-sCERs spread trading is mostly used by industrial and financial operators
involved in short term trading activity. Indeed, the supply and demand for EUA-sCERs
spread contracts come from short term price differences between EUAs and sCERs (as
shown in Figurel). At time ¢, it appears profitable for investors to swap between these two
carbon assets by buying sCERs and selling EUAs, since both assets may be used for
compliance in the EU ETS (as long as the import limit on CERs is not reached). However,
not all market participants may benefit from this arbitrage strategy. The reason for that
situation is twofold: (i) there exist different types of market participants with different kinds
of obligations and flexibility requirements on the use of SCERs, and (7i) technical skills are
required to simultaneously buy sCERs and sell EUAs.

The latter point means that while banks may trade EUAs and sCERs on the market,
they cannot use them towards their own compliance (and thus benefit from the full scale of
the arbitrage strategy), since they are not regulated by the scheme. Conversely, large
regulated utilities such as energy trading companies may benefit from opening a carbon
trading desk in-house and exchange sCERs for EUAs in their own registry account. This
type of market participant is therefore able to arbitrate between the two emissions markets
by buying sCERs on the market and selling EUAs (registering them in its own registry
towards compliance with their emissions target) when the price difference between the two
emissions markets is at its maximum. This strategy yields a net “free-lunch” benefit as long
as the import limit on CERs is not reached (which is not likely to be reached anytime soon
according to the analysis by Trotignon and Leguet (2009)).

6.1. Exogenous variables

Besides the variables that have been previously identified as impacting EUAs and
sCERs, we use price thresholds, market activity and liquidity variables stemming from the
market microstructure literature (Codogno et al. (2003), Manganelli and Wolswijk (2009))
that may have an explanatory power for the EUA-sCER spread.

Regarding price thresholds, EUApricelevel is computed by regressing the EUA-sCER
spread against the time-series of EUA prices. This variable reflects the idea that investors
would more easily trade the spread if EUAs prices are around €30 than if they drop to €5.
Following Zhang (2002), we also use a threshold variable (noted thresholdSpread) defined
at €6 for the EUA-sCER spread.z" Above this threshold, investors are expected to
simultaneously sell EUAs and buy sCERs. Below, they are expected to wait for the
widening of the spread to benefit from future more profitable arbitrage opportunities. Note

% This threshold has been fixed considering the average level of the spread during our sample period.
Besides, we experimented with various thresholds, and this variable was found to be statistically
significant only as such.

27



The EUA-sCER Spread: Compliance Strategies and Arbitrage
in the European Carbon Market

that this behavior is coherent with the fact that the import of CERs in the EU ETS (and thus
the arbitrage opportunity) is limited in quantity and through time.

Regarding market activity, we use the average trade size for ECX EUA Phase II Futures
prices (averagetradeEUA), defined as the daily volume divided by the daily number of
trades, in order to track the impact of block trades or quasi-block trades on the spread. One
could expect that large primary CER issuance could translate into large movements in the
EUA market for cashing on the spread. Additionally, we have defined the variable
openintEUA as the level of the open interest for the prevailing EUA calendar futures
contract. This variable reflects the market overall level of engagement with the underlying
asset. Compared to cumulative volumes, the open interest measure has the advantage to
neutralize the impact of further transactions on existing futures positions to other market
participants. The larger the open interest, the larger the quantity of futures contracts to be
settled at a given date. We have also created the variable CDMmktdvipt as a dummy
variable equal to 1 during news announcements regarding the ability to trade sCERs (such
as the beginning of trading sCER throughout standardized contracts on market places, etc.)
and 0 otherwise.”” We expect more activity on the spread as more announcements are
recorded. Moreover, numbertradeEUA indicates the daily number of trades performed on
ECX EUA Phase II future prices, as a proxy for liquidity in the market. This variable also
reflects market participants’ increased technical skills, as they may resort to specific
algorithms to “slice up” large orders. Figure 12 displays the openintEUA,
numbertradeEUA, and averagetradeEUA variables.

7 See Annex I for announcement dates regarding the ability to trade sCERSs.
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Figure 12: ECX EUA Futures Open Interest (left), BNX Daily Number of Trades
(right), and Average value of Orders (below) from March 9, 2007 to March 31, 2009
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To detect whether the size of the EUA-sCER spread is affected by changes in market
activity and more specifically by market liquidity, we have considered trade-based
measures for EUAs and sCERs. More precisely, following Goémez-Puig (2006), we have
instrumented the AvolumeEUA variable, which tracks changes in the volume of EUAs
traded, and the AvolumesCER variable, which tracks changes in sCERs volumes
exchanged.?® Figure 13 shows the evolution of these two variables.

* Data from the London Energy Brokers’ Association (LEBA) have been used to compute this variable.
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Figure 13: ECX EUA Futures (left) and Reuters CER Index (right) Volumes from
March 9, 2007 to March 31, 2009
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By using the (intraday) order book for EUAs, we computed relative bid-ask measures
for EUAs (bidaskEUA). We systematically checked relative bid-ask spreads over 10% and
below 1% (i.e. out of the established trend), and manually removed outliers that most likely
reflected market orders made without any chance of being fulfilled.?” Hence, the “cleaned”
bid-ask used is a proxy for real liquidity of EUAs. We applied the same methodology with
brokers’ bid-ask data from the Reuters CER index (bidasksCER). The index contains daily
average bid and ask prices from eight representative carbon brokers, so that no
recalculation was required to proxy market liquidity on a daily basis. Figure 14 shows the
bidaskEUA and bidasksCER variables.

Figure 14: Bid-ask spread for ECX EUA Futures (left) and Reuters CER Index
(right) from March 9, 2007 to March 31, 2009
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¥ Bid-ask spreads may be negative according to our calculations since: (1) we are interested in daily average
bid and ask, hence smoothing any intraday move; and (2) some bids or asks could have been posted with
no intent of being attractive, but rather by contractual obligations (for market makers), or to deceive.
Those bids and asks distort our estimation of bid-ask spreads. There is no economic rationale behind a
negative bid-ask for a single quote, but it could indicate strong intraday activity.
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Finally, we use Panic as a dummy variable equal to 1 from October 10 to 17, 2008;
and 0 otherwise. This variable reflects the sharp increase in the volatility of EUA prices that
may be observed in October 2008, as regulated utilities were “rushing to cash” in search for
liquidity, in order to cope with the credit crunch crisis according to market observers.*

6.2. GARCH modeling

We model the EUA-sCER spread by following the same methodology as for the
determinants of EUA and sCER variables:

Spread, = a + kmomentum g, + VVIX, + "CDMpipeline, + Acrisis, + uEUETSphaselll,
+VITL _CITL, + Tpanic, + gCDMEBmeeting, + Vlinking , + wCDMmktdvipt,
+ gnumbertradeEUA, + wopenint EUA, + yEUApricelevel, + nAaveragetradeEUA,
+ EAvolumeEUA, + fAvolumesCER, + wbidaskEUA, + gbidasksCER,
+ ythresholdSpread, + &,

O, =0y + a+(L)‘9t+—l - O'/_(L)gt_fl + ﬂ(L)O'H

with  Spread, the first-differenced = EUA-sCER  spread, @ CDMmktdvipt,,
numbertradeEUA,, openintEUA;, EUApricelevel,, averagetradeEUA;, volumeEUA,,
volumesCER,, bidaskEUA,, bidasksCER,, thresholdSpread, are the exogenous variables
specific to the EUA-sCER spread commented above. Other variables have been defined
previously for the analysis of EUA and sCER price drivers. Exogenous variables have been

transformed to stationary when needed.

6.3. Estimation results

Table 6 presents the estimation results for the EUA-sCER spread. All diagnostic tests
are validated for regressions (6) and (7).

Note that a statistically significant positive (negative) coefficient means that the spread
is widening (narrowing) following changes in the underlying explanatory variable.

30 See editorial by Trevor Sikorski (Barclays Capital) in issue #35 of the Tendances Carbone newsletter,
Mission Climat Caisse des Dépots, Paris.
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Table 6: TGARCH(1,1) Regression Results for the EUA-sCER Spread Drivers

Variable Spread, Spread,
(6) (7
Constant 0.0145 -0.0080
(0.0111) (0.0134)
EUA price level -0.9562%*** -0.6726%***
(0.0322) (0.0469)
A volume EUA, 0.0007** 0.0001***
(0.0004) (0.0001)
A volume sCER; 0.0013**
(0.0007)
Momentumgya, -0.0945%*** -0.0997***
(0.0121) (0.0151)
Linking, 0.2610%%**
(0.0733)
VIX; 0.3364%%*
(0.1213)
Crisis, -0.4299%%**
(0.0711)
CDM EB meeting, -0.0901 ***
(0.0541)
ThresholdSpread, 0.0764%***
(0.0134)
CDM pipeline; -0.0161***
(0.0013)
Open interest EUA, 0.0001 ***
(0.0001)
Adjusted R* 0.5800 0.5658
Log-Likelihood 141.5910 79.0179
ARCH LM Test 0.5540 0.5278
Q(20) statistic 36.765 26.371
AIC -0.5023 -0.4699
SC -0.4209 -0.3016
N 529 529

Note: Spread, = EUA~sCER, EUA refers to ECX EUA Phase Il Futures prices. sCER; refers to Reuters sCER
Price Index. ***,(**),(*) Denotes 1%,(5%),(10%) significance levels. The quality of regressions is verified through
the following diagnostic tests: the adjusted R-squared (Adjusted-R’), the Log-Likelihood, the ARCH Lagrange
Multiplier (ARCH LM Test), the Ljung Box Q-test statistic with a maximum number of lags of 20 (Q(20) statistic), the
Akaike Information Criterion (AIC), and the Schwarz Criterion (SC). The 1% (5%) critical value for the Ljung-Box
portmanteau test for serial correlation in the squared residuals with 20 lags is 37.57 (31.41). N is the number of
observations.

In regression (6) we observe that the EUApricelevel, variable has a strong and
statistically significant explanatory power for the determination of the EUA-sCER spread.
As highlighted previously, sCER and EUA prices have followed similar price paths over
the period. Thus, changes in EUA prices have a strong effect on the EUA-sCER spread.
The sign of the EUApricelevel, coefficient is negative, which suggests that when EUA
prices increase, the EUA-sCER spread diminishes. This result supports the intuition that at
higher EUA price levels, investors and market operators have higher incentives to take
adequate positions in both emissions markets to take advantage of the EUA-sCER spread.
On the contrary, at low levels of EUA prices, the EUA-sCER is narrowing, which yields
less profitable arbitrage opportunities. Interestingly, the coefficients of the AvoumelEUA,
and AvoumelsCER, variables are statistically significant and positive. This result indicates
that increased trading of EUAs and sCERs translates into wider EUA-sCER spread. This
view is conform to the use of the EUA-sCER spread as a speculative product by rational
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investors and arbitrageurs: the volumes exchanged for EUAs and sCERs are found to be the
highest when the EUA-sCER spread is at its maximum — thereby reflecting the strategy to
maximize net profits.

The momentumgyy, and linking, variables have a statistically significant impact on
variation of the EUA-sCER spread. The sign of momentumgyy;, is positive, which suggests
that when this variable is increasing (on a bullish carbon market), the EUA-sCER spread is
narrowing. This result illustrates in a similar way the profit-maximizing strategy of rational
market participants in the carbon market through the use of the EUA-sCER spread.
Conversely, on a bearish carbon market (indicated by decreases in the momentumgy,y,
variable), the EUA-sCER spread is widening, which provides future opportunities for
market participants to make the spread transaction at better conditions.

As indicated by the positive coefficient of the /inking variable at the 1% level, the
development of an international carbon market accepting SCERs as compliance assets tends
to widen the EUA-sCER spread. Indeed, the prospects for growing sSCERs demand outside
of the European trading system might lead to a partial decorrelation from EUAs in a near
future.

News regarding Phase III of the EU ETS, the ITL-CITL connection and market
liquidity (as proxied by bid-ask spreads) could not be identified as statistically significant
variables in regression (6).

Regression (7) is similar to regression (6), and reveals the explanatory power of six
additional variables. The EUApricelevel, the AvolumesEUA, and the momentumgyy,
coefficients may be interpreted identically. Changes in the VX index, which are obtained
from the implied volatility of S&P option prices, are used as a proxy of the evolution of
aggregate financial markets’ volatility. Its positive and statistically significant coefficient
indicates that the EUA-sCER spread widens when the stock market volatility increases.
This increase in the spread may indicate that the risk of holding sCER is perceived as
higher than holding EUAs, which translates into a higher risk premium for the sCERs.

The crisis dummy variable appears statistically significant with a negative coefficient.
Since the start of the global financial crisis, the EUA-sCER spread has narrowed, which
suggests a strong interest in selling EUAs. Two facts may help to understand this negative
coefficient. First, the global financial downturn has caused a decrease in industrial
production and energy demand (and thus in the energy production of CO,-intensive plants).
The need for CO, allowances has dropped drastically, which fostered incentives to sell
EUAs and contributed to the decline of the EUA-sCER spread. Second, as a consequence
of the crisis, funding needs have increased. From this perspective, selling EUAs (which are
only needed for compliance on April 30™ of the year N+1) constitutes a sound strategy in
order to obtain the cash needed from companies, especially in a credit-constrained
economic environment. Thus, massive sales of EUAs for this purpose may explain the
narrowing of the spread.
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The coefficient of the dummy variable ThresholdSpread,, is statistically significant and
positive. Thus, when the EUA-sCER spread goes beyond the €6 level, the spread is
widening more. This result confirms that market participants wait for the €6 threshold of
the EUA-sCER spread to be achieved before taking advantage of the arbitrage strategy,
thereby maximizing net profits from this free-lunch activity.

The coefficients of the two variables CDMpipeline, and CDMEBmeeting are negative
and statistically significant. Positive (negative) expected amount of primary CERs issued
and news about CDM EB meetings are associated with a narrowing (widening) of the
EUA-sCER spread. Increasing the delivery of CERs reduces the counterparty risk of a
secondary CER, since the supply of primary CER is rising. Thus, the premium for holding
EUAs instead of sCER decreases, which further narrows the spread.

Finally, the openintEUA, variable may be interpreted similarly to the results relative to
changes in carbon assets’ volumes. As for the AvolumeEUA,; and AvolumesCER, variables,
increases in the open interest position on EUA futures is translated into a wider EUA-sCER
spread.

Taken together, these results contribute to the clear identification of three categories of
drivers for the EUA-sCER spread. First, the spread reacts to the EUA price levels as the
EU ETS remains to date the major source of CER demand (both primary and secondary).
Second, the spread is explained by variables reflecting the use of sCERs as a flexibility
mechanism for EU ETS compliance buyers. This may be proxied by looking at (1)
emissions prospects (i.e. demand for compliance) and the compliance profile of buyers (i.e.
their ability to surrender a given quantity of CERs for compliance) and (2) the relative
supply of EUAs (based on the levels of NAPs) and CERs (from the CDM pipeline) which
will end up being used in the EU ETS. Third, and most importantly, we uncover that the
EUA-sCER spread may be explained by market microstructure variables (e.g. trading
activity proxies) justifying the “speculation”-related nature of this instrument. This result
constitutes our central contribution with regard to the identification of the EUA-sCER
spread drivers, since it appeared obvious to most market observers that this trading facility
was used for speculative purposes, yielding net profit free-of-risk (that may be truly called a
‘free-lunch’ activity for arbitrageurs). Thus, we provide the first formal empirical analysis
of such rational behavior of investors in the context of the EU ETS Phase II.
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Conclusion

This article provides the first complete empirical analysis of both EUAs and sCERs
price drivers, as well as the determinants of the EUA-sCER spread during Phase 11 (2008-
2012) of the EU ETS. To our best knowledge, no previous empirical study has focused
either on the determination of sCERs drivers or on the arbitrage strategies consisting in
buying sCERs and selling EUAs (yielding net profits from the existence of a positive EUA-
sCER spread during the sample period). We may decompose our findings in three main
contributions.

First, the fundamentals of EUAs during Phase II have been clearly identified. As the
supply of allowances was fixed by allocations through negotiations between the European
Commission and Member States, price uncertainties typically depend on the level of
demand factors. Conform to previous literature, we find that the demand for Phase 11 EUA
prices also depends, in the short term, on the level of CO, emissions. The EUA variable
classically evolves during the sample period as a function of primary energy prices and
news related to Phase II NAPs. However, economic growth and weather conditions were
not identified as significant influences, contrary to what has been observed during Phase 1.

Second, our analysis of SCERs (i.e. CERs already issued by the CDM Executive Board
of the United Nations) has confirmed that EUAs determine significantly the sCERs price
path. We show that there exists one long-term cointegrating vector between EUAs and
sCERs taken in natural logarithm transformation. Besides, the SCER variable has a stronger
tendency to adjust to past disequilibria by moving towards the trend values of the EUA
variable, which confirmed that EUAs are the leading factor in the price formation of
sCERs. This result emphasizes that EUAs remain the most widely recognized “money” on
emissions market. EUAs are exchanged broadly as the most liquid asset for carbon trading,
which may be explained by the fact that Europe remains to date the major source of
demand for that kind of credits. We also find that energy prices, variables referring to the
linking of international carbon markets, and momentumgcgr variables have an impact on
sCERs prices. We conclude that sCERs pricing differs from EUAs since it embodies a
greater level of uncertainty. Market participants are lacking the exact information
concerning either the supply of CERs, or the total expected demand by 2012. Indeed, the
future of credit offset mechanisms beyond 2012 is currently in definition with the current
international negotiations for an international climate framework successor of the Kyoto
protocol and with the current expectation on the regional carbon markets development,
while the use of CERs in Europe is confirmed only until 2020.

Our third and main contribution concerns the determinants of the observed difference
between EUA and sCER prices, namely the EUA-sCER spread. We identify statistically the
influence of three key factors: (i) the evolution of EUA price levels, (ii) the regulatory
information concerning both sCERs and EUAs, and (iii) trading activity proxies. Hence, we
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confirm the view that the EUA-sCER spread may be used as a ‘speculative’ instrument by
rational investors and market participants on the EU ETS, who are able to trade
simultaneously EUAs and sCERs when the price difference is large enough to justify the
arbitrage activity. When ‘free-lunch’ opportunities exist on financial markets, they should
be instantly identified by market agents.

The existence of the EUA-sCER spread may thus be chiefly explained by the
conjunction of three factors: (i) the demand and supply of the EUA and sCER are different
with higher uncertainty related to the sCERs, (ii) the European Commission has set an
import limit of 13.4% on average concerning the use of CERs towards compliance within
the European emissions trading system and (iii) the EUA and sCERs are not perfectively
fungible for all market participants but only for those with compliance obligations. This
limits the exploitation of the arbitrage opportunities that, in high volumes reduce the spread.
Consequently, the arbitrage opportunities of exchanging cheaper sCERs by EUAs for
compliance are limited in quantity and through time and benefit mainly to energy trading
companies which possess large supplies of EUAs and their own carbon trading desk. In this
paper, we uncover a salient characteristic of these newly created emissions markets: they
allow the existence of temporary free-lunch activities (i.e. arbitrage opportunities are not
necessarily transformed once they are identified, which is contrary to fundamental theories
of finance), and foster the adoption of arbitrage operations (i.e. purchasing the EUA-sCER
spread and thereby making a net risk-free profit) once the EUA-sCER spread has reached a
given threshold. This empirical analysis of emissions markets reveals in fine the rational
behavior of investors: profit-maximizing strategies are elaborated given the very unusual —
compared to other financial markets — institutional characteristics of emissions markets.
The arbitrage activity between EUA and sCERs also requires an expert knowledge that only
banks with carbon trading desks, major energy trading companies, and specialized brokers
are able to offer as of today. As the range of carbon markets develops worldwide, we may
expect this kind of trading activities to develop rapidly, as the trading of spread for crude
oil futures has recently demonstrated.

The evolution of the spread will depend crucially on sCER supply and its European
demand, which will be defined gradually until the end of Phase II. Two scenarios are
possible. If the supply of CERs is less than 1,400 Mt (including both primary and
secondary), the price of SCER should rise towards that of the EUAs, and the spread should
shrink. Conversely, if the supply of CERs is more than 1,400 Mt, the price of sCERs will
disconnect from that of the EUAs.
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Annex 1: Dummy variables

ITL-CITL
1

Linking

cDMm

EUETS CDM EB
Phase Il meeting mktdvipt
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Date
14/03/2008
30/04/2008
19/05/2008
23/05/2008
30/05/2008
06/06/2008
09/06/2008
17/06/2008
09/07/2008
02/08/2008
06/08/2008
12/08/2008
26/09/2008
08/10/2008
15/10/2008
20/10/2008
25/10/2008
12/11/2008
04/12/2008
17/12/2008
17/12/2008
02/02/2009
10/02/2009
16/02/2009

cbv
mktdvipt
1
1

NAPs EUETS CDM EB
Phase Il Phase Il meeting
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Date
26/03/2007
02/04/2007
18/04/2007
04/05/2007
30/05/2007
04/06/2007
06/06/2007
11/06/2007
11/07/2007
18/07/2007
27/07/2007
29/08/2007
01/10/2007
19/10/2007
26/10/2007
26/10/2007
14/11/2007
30/11/2007
16/01/2008
01/02/2008
21/02/2008
27/02/2008
03/03/2008

The dummy variables refer to new information disclosure concerning NAPs Phase II (NAPs Phase II), the
development of the EU ETS during Phase Il (EU ETS Phase Ill), the day of publication of the CDM Executive Board
report (CDM EB meeting), the CER market development (CDM mktdvipt), the linking of emission trading schemes
worldwide (linking) and the ITL-CITL connection (ITL-CITL). Sources: UNFCCC, European Commission, European
Council, European Parliament, European Economic and Social Committee, Committee of the Regions, Nordpool, ECX,
EEX, Bluenext, ICE, Point Carbon, CNN.
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1 Introduction

To what extent does the introduction of options tend to destabilize tradable permits markets? In-
deed, allowing for option trading may have some consequences on volatility in the underlying mar-
ket. According to Weaver and Banerjee (1990), the introduction of options may affect the volatility
of the underlying market, since they affect producers’ decisions through intertemporal arbitrage.
Conversely, it may also very well increase the liquidity and the informational efficiency of the un-
derlying market. Back (1993) shows that options may guide producers’ decisions based on a mix
of true information and speculators’ noise signals. Since allowance price stability is an important
determinant of the performance of cap-and-trade programs, an analysis of how the introduction
of options trading affected volatility in the European Union Emissions Trading Scheme (EU ETS) is
worthwhile.

Previous empirical literature provides mixed conclusions concerning the introduction of options.
In an exhaustive survey on this topic, Mayhew (2000) shows ambiguous effects of the introduction
of derivatives on the volatility of the underlying asset, i.e. it may be either positive or negative
depending on the market under consideration (equities, bonds, or commodities). Fleming and
Ostdiek (1999) have contributed to the analysis of the introduction of derivatives instruments on
the underlying crude oil market and derived products. The authors provided evidence of a short-
run effect on the level of volatility while the long-run effect may be due to exogenous factors, such
as the deregulation of energy markets. Thus, detecting whether the introduction of options has
increased or decreased volatility in the EU ETS remains an empirical issue worth of investigation.

The EU ETS is a compliance market, which means that each installation of the approximately 10,600
covered installations needs to surrender each year a number of allowances, fixed by each Member
State in its National Allocation Plan (NAP), equal to its verified emissions (Ellerman and Buchner
(2008), Alberola et al. (2009)). To comply with their emissions target, installations may exchange
quotas either over-the-counter, or through brokers and market places.® Bluenext® is the market
place dedicated to CO- allowances based in Paris. It has been created on June 24, 2005 and has
become the most liquid platform for spot trading.” The European Climate Exchange (ECX) is the
market place based in London. It has been created on April 22, 2005 and is the most liquid platform
for futures and option trading.®

Following the rapid development of spot and futures trading on these exchanges®, more sophisti-
cated carbon products have been progressively introduced, thereby offering to market participants
a greater flexibility in the management of their compliance requirements. Option prices have been
introduced by ECX on October 13, 2006.'° The introduction of carbon options naturally raises the

5To guarantee compliance, any reported violation may be associated with a high penalty (Stranlund et al. (2005)). The
existence of a hedging (option) instrument may facilitate compliance, and as such be viewed as a complement of enforcing
policies.

8Formerly called Powernext Carbon.

772% of the volume of spot contracts are traded on Bluenext (Reuters).

896% of the volume of futures contracts are traded on ECX (Reuters).

90ther exchanges are worth mentioning: (i) NordPool, which represents the market place common to Denmark, Finland,
Sweden, Norway, and is based in Oslo; (ii) the European Energy Exchange (EEX), based in Leipzig, trading spot and deriva-
tives products for emissions allowances rights; and (iii) the New York Mercantile Exchange (NYMEX), based in the U.S,,
which is also trading European futures and options emissions rights. The price of products exchanged on these market
places are strongly correlated, which is also a feature of stock markets.

10Note that options have also been introduced by EEX on March 5, 2008. However, we do not have enough historical data at



question of their utility for market agents. There are mainly two uses of options: (i) for speculation
purpose in order to make a profit from trading, and (ii) for hedging purpose, in order to reduce or
eliminate the risk in a position. The second use obviously allows industrials to lower the economic,
political and financial uncertainties attached to market developments in the EU ETS. Bohringer
et al. (2008) emphasize that overlapping instruments should be avoided to achieve efficiency in
global environmental policy. The main “environmental policy”-related risk for industrials would
then consist in permits price changes, which could be strongly reduced by using hedging instru-
ments such as options.

Empirical studies of the EU ETS option market remain scarce. Uhrig-Homburg and Wagner (2007)
describe extensively derivative instruments in the EU carbon market based on qualitative surveys.
Chesney and Taschini (2008) provide an application of CO, price dynamics modeling to option
pricing. Chevallier et al. (2009) provide a case-study of investors’ changes in risk aversion around
the 2006 compliance event using both futures and options. To our best knowledge, no prior study
has investigated the impact of the options introduction in the EU ETS on the characteristics of the
underlying carbon price in terms of volatility.

When introducing option trading in October 2006, the ECX may have indirectly increased the volatil-
ity of the underlying futures market. Indeed, the higher the leverage effect associated with option
trading, the higher speculation about fuel substitution develops, which translates into rising volatil-
ity. This effect has been observed in some other markets and is generally viewed as a negative ex-
ternality. More specifically, we examine the following central questions: what is the impact of the
option market on the carbon price in terms of volatility? Is the introduction of the option market
the only cause behind volatility changes? The latter question leads us to consider other factors such
as institutional decisions, energy and global commodity markets to which volatility changes could
be attributed as well.

Our empirical study departs from previous literature on several aspects. First, we develop a GARCH
model with a dummy variable to study the impact of the introduction of the option market (Anto-
niou and Foster (1992), Antoniou and Holmes (1995), Gulen and Mayhew (2000)). As in Antoniou
and Foster (1992), we decompose our sample into two sub-periods to identify any impact on the
nature (the dynamics) of the volatility through changes in GARCH coefficients. This econometric
analysis is finally taken one step further by using rolling estimations with a window of 200 observa-
tions. Then, we proceed with an endogenous structural break test (Incldn and Tiao (1994), Sans6,
Aragé and Carrion (2004)) to detect more precisely the influence of options introduction. To the
best of our knowledge, this kind of test has not been used for such a purpose yet.

After taking into account the volatilities of several energy- and commodity-related variables, we do
observe an impact of the introduction of the option market on the level of the volatility of carbon
futures prices. The results are fairly robust to various specifications of the conditional volatility
including different combinations of exogenous variables. These findings therefore suggest that the
observed changes in the unconditional component of volatility for EUA futures returns and the
introduction of options are linked. In addition, we show a significant change in the dynamics of
volatility which might be related to the introduction of options (while this latter effect needs to be

hand for this product and liquidity was known to be very low. So, we decide to focus on ECX option prices only. The study
of discrepancies between ECX and EEX option prices is left for further research.



interpreted cautiously). Overall, our article brings a better understanding of the role played by the
option market on the volatility of the carbon price in the EU ETS.

The remainder of the paper is organized as follows. Section 2 presents the carbon futures and op-
tion markets. Section 3 summarizes the data used. Section 4 details the econometric methodology,
along with estimation results. Section 5 concludes.

2 Overview of the futures and option markets in the EU ETS

In what follows, we detail first the structure and main features of EU ETS derivatives, and second
we provide a liquidity analysis with a specific focus on the daily liquidity in option contracts.

2.1 Structure and main features of EU ETS derivatives

The EU ETS has been created by the Directive 2003/87/CE. Across its 27 Member States, it covers
large plants from CO.-intensive emitting industrial sectors with a rated thermal input exceeding
20 MW. One allowance exchanged on the EU ETS corresponds to one ton of CO released in the
atmosphere, and is called a European Union Allowance (EUA). 2.2 billion allowances per year have
been distributed during Phase I (2005-2007). 2.08 billion allowances per year will be distributed
during Phase IT (2008-2012). With a value of around €20 per allowance, the launch of the EU ETS
thus corresponds to a net creation of wealth of around €40 billion per year. On January 2008, the
European Commission has extended the scope of the EU trading system to other sectors such as
aviation and petro-chemicals by 2013, and confirmed its functioning Phase III until 2020. As for
many commodities markets, carbon allowances may be traded through on-exchange markets and
through over-the-counter derivatives markets (see Daskalakis et al. (2009), Benz and Hengelbrock
(2008) and Rotfuss (2009) for exhaustive descriptions of the EUA derivatives markets). We present
below the main features of futures and options contracts written on EUAs.

We choose to model the behavior of the ECX futures prices for the carbon time-series in this article.
One reason is that, due to the banking restrictions implemented between 2007 and 2008 (Alberola
and Chevallier, 2009), spot prices show a non-reliable behavior during Phase 1.!! The futures con-
tract is a deliverable contract where each member with a position open at cessation of trading for
a contract month is obliged to make or take delivery of emission allowances to or from national
registries. The unit of trading is one lot of 1,000 emission allowances. Each emission allowance
represents an entitlement to emit one ton of carbon dioxide equivalent gas. Market participants
may purchase consecutive contract months to March 2008, and then December contract months
from December 2008 to December 2012.'2 Delivery occurs by mid-month of the expiration contract
date. Trading occurs from 07.00AM to 05.00PM GMT.

Besides, we introduce ECX options into our econometric analysis. ECX option trading started on
October 13, 2006. The underlying security for option trading is the ECX futures contract of corre-

Besides, in the EU ETS, allowances need to be surrendered only on a yearly basis during the compliance event by mid-May,
which makes the distinction between spot and forward prices less relevant than on other commodity markets such as the
crude oil or the electricity market where storage costs are important. Note by contrast that storage costs are zero for CO2
allowances.

12Note spreads between two futures contracts may also be traded.



Table 1
Expiration dates for ECX options contracts
Source: Bloomberg

Month Last Trade Expiration
November 11/22/06 11/22/06
2006

December 12/19/06 12/19/06
2006

December 12/24/07 12/24/07
2007

December 12/10/08 12/10/08
2008

January 2009 1/21/09 1/21/09
February 2009 2/18/09 2/18/09
December 12/9/09 12/9/09
2009

December 12/15/10 12/15/10
2010

December 12/14/11 12/14/11
2011

December 12/14/12 12/14/12
2012

sponding maturity. Options have been introduced on ECX as European-style options, i.e. options
convey the right, but not the obligation to buy (call) or sell (put) the underlying asset at a speci-
fied strike price and expiration date.!® Similarly, the contract size is 1,000 emissions allowances.
Expiration dates for ECX options contracts are summarized in Table 1.

2.2 Liquidity analysis

During Phase I (2005-2007), the total volume of allowances exchanged in the EU ETS has been
steadily increasing. The number of transactions has been multiplied by a factor four between 2005
and 2006, going from 262 to 809 million tons. This increasing liquidity of the market has been
confirmed in 2007, where the volume of transactions recorded equals 1.5 billion tons. This peak
of transactions may be explained by the growth of the number of contracts valid during Phase II,
with delivery dates going from December 2008 to December 2012, which amount for 4% of total
exchanges in 2005, and 85% in 2007. These transactions reached €5.97 billion in 2005, €15.2 bil-
lion in 2006, and €24.1 billion in 2007, thereby confirming the fact that the EU ETS represents the
largest emissions trading scheme to date in terms of transactions. In 2008, the carbon market was
worth between €89-94 billion, up more than 80% year-on-year (Reuters). The launch of secondary
certified emission reduction (CER)'* contracts on ECX certainly fostered this growth rate of trans-
actions.

The trading of ECX futures started on April 22, 2005 with varying delivery dates going from De-

13An American option is like an European option, except it can be exercised at any time prior to maturity.

14 According to the article 12 of the Kyoto Protocol, Credit Development Mechanisms (CDM) projects consist in achieving GHG
emissions reduction in non-Annex B countries. After validation, the UNFCCC delivers credits called Certified Emissions
Reductions (CERs) that may be used by Annex B countries for use towards their compliance position. CERs are fungible
with EU ETS allowances with a maximum limit of around 13.4% on average.



cember 2005 to December 2012. Futures contracts with vintages December 2013 and 2014 were
introduced on April 8, 2008. For the December 2009 futures contract, futures trade at €13.32/ton
of CO; as of January 15, 2009, and have reached a maximum price of €32.90/ton of CO, in 2008.'5
From April 2005 to January 2009, the total volume of ECX futures exchanged for all vintages is equal
to 40.67 billion.

The volume of options contracts traded from October 13, 2006 to January 16 2009 for the futures
contracts of maturity December 2008 and December 2009 are presented in Table 2, along with the
average volume contract for each strike. The total volume of options contracts traded is equal to
235Mton of CO; for the December 2008 contract, and to 73 Mton of CO, for the December 2009
contract (as of January 16, 2009). Calls are more actively traded than puts with an average volume
of, respectively, 163 Mton and 72 Mton of CO, for the December 2008 contract. This pattern is
reversed for the December 2009 contract with a total volume of calls and puts traded equal to, re-
spectively, 31 Mton and 42 Mton of CO,. This latter result may be explained by anticipations of
carbon price decreases due to economic uncertainties by market participants. We may notice that
the volume of call prices exchanged is clustered around the strikes ranging between €25 and €28.
Conversely, the volume of put prices exchanged is clustered around the strikes ranging from €15
to €24. These asymmetries reflect the hedging strategies constructed by market agents to reduce
the risk of their position with regard to high/low carbon price changes. They also reflect the uncer-
tainties affecting the allowance market concerning the possible range of price changes in a moving
institutional context.

Compared to 1.9 billion CO-, futures traded in 2008, the size of the option market (235 Mton) during
the same year provides evidence that options are actively traded despite it remains an emerging
market. This is of central importance for our empirical analysis, since we want to assess whether
options have an effect on the carbon price volatility. Since it is possible that the liquidity in options
contracts was not instantaneously effective at the date of the introduction of the options market,
we focus next on the daily liquidity in options contracts'®.

Figure 1 shows the daily liquidity in options contracts during our study period. This figure confirms
that, on average, calls are more traded than puts in the EU ETS. More importantly, we notice that the
liquidity in options contracts seemed to increase from 500,000 tons to 1Mton for the first time on
May 18, 2007 for calls and on June 27, 2007 for puts. Besides, we may observe the very high degree of
concentration of options trading during January 2008. During that period, the daily volume of calls
traded is often superior to 1Mton, with a maximum of 4.450Mton on January 28, 2008. Similarly,
for puts we have a peak at 3.8Mton on January 04, 2008. Figure 1 therefore reveals that the options
market becomes increasingly liquid through time, as one can expect, and that the highest volumes
of options exchanged seem to coincide with anticipations of yearly compliance events.

151n the longer term, analysts forecast EUA prices of €20-25/ton of CO2 over Phase II and €25-30/ton of CO2 over Phase III
(Reuters).
16We wish to thank an anonymous reviewer for highlighting this point.
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Figure 1

Daily volumes (in ton) of options contracts for ECX EUA Futures Calls (top) and Puts (bottom) from
October 13, 2006 to April 03, 2008

Source: European Climate Exchange
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Figure 2
Carbon futures prices of maturities December 2008 (left) and 2009 (right) from April 22, 2005 to
January 16, 2009

Source: European Climate Exchange
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Figure 3
Returns on ECX Carbon Futures Prices of maturities December 2008 (left) and 2009 (right) from
April 22, 2005 to January 16, 2009

3 Data

Our sample period goes from April 22, 2005 to April 04, 2008. We gather a full sample of 756 daily
observations. The source of the data is ECX, Bloomberg and Reuters.

3.1 Carbon Price

For carbon allowances, we use daily futures and options for the December 2008-2009 contracts
traded in €/ton of CO, on ECX. Figure 2 shows the futures price development for contracts of ma-
turities December 2008 and 2009 from April 22, 2005 to January 16, 2009. We may observe that fu-
tures prices for delivery during Phase II (2008-2012) proved to be much more reliable than futures
prices for delivery during Phase I (2005-2007) due to the banking restrictions enforced between the
two Phases (Alberola and Chevallier, 2009). Besides, we note that post-2007 futures convey a coher-
ent price signal - around 20 €/ton of CO- - throughout the historical available data for the second
phase of the scheme. The futures price development features a lower bound around 15€/ton of
CO- in April 2007, and an upper bound around 35€/ton of CO, in November 2008.
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Table 3

Descriptive Statistics of ECX EUA Futures Returns and Energy and Global Commodity Markets
Returns from April 22, 2005 to January 16, 2009
Source: European Climate Exchange, Reuters

Full Period Mean Median Max Min Std. Skew. Kurt. N
Dev.

Carbon Futures Returns

EUApgcos -0.0018  0.0200 3.6500 -7.4000 0.6149 -2.2450  29.7930 936
EUApgcos  -0.0047  0.0200 3.9000 -7.4000 0.6169 -2.1299  29.1426 957
Energy and Global Commodity Markets Returns

Brent -0.0135 0.0381 11.0876 -15.6324 1.6227 -0.8159 19.0411 830
Coal 0.0034 0.0100 8.2900 -5.5600 0.6566 1.1207  46.3338 830
CRB 0.0619 0.4000 30.5700 -38.8100 5.3023 -0.8334  12.9586 830
CleanDark 0.0151 -0.0250 50.1700 -40.1400 4.2297 1.4064 50.5866 830
Ngas 0.0009 -0.0700  42.4500 -20.5200 3.2438 3.3141 49.2934 830
Power 0.0121 -0.0200 43.7100 -39.7800 4.1482 0.5050  44.8046 830
CleanSpark 0.0137 -0.0300 45.5000 -42.2200 4.8714 0.0109 33.3175 830
Switch 0.0001 0.0001 0.0500 -0.0300 0.0053 1.3380 18.8594 830

Note: EU Apgrcos and EU Apgcog refer respectively to the carbon futures returns of maturity
December 2008 and December 2009, C'RB to the Reuters/Commodity Research Bureau Futures
Index, StdDev. refers to the standard deviation, Skew. refers to the skewness, Kurt. refers to the
kurtosis, and N refers to the number of observations.

Descriptive statistics of ECX futures contracts of maturity December 2008 and 2009 are presented
in Table 3. We may observe that ECX futures of all maturities present negative skewness and excess
kurtosis!’. These summary statistics therefore reveal an asymmetric and leptokurtic distribution.!®

We also present in Figure 4 the empirical autocorrelation function of EUA returns and squared re-
turns for the futures contracts of maturity December 2008 and December 2009. For both series,
although the returns themselves are largely uncorrelated, the variance process exhibits some cor-
relation. This is consistent with the earlier discussion on the necessity to use GARCH modeling for
CO,, price series'®.

3.2 Energy Prices

According to previous literature, energy prices are the most important drivers of carbon prices due
to the ability of power generators to switch between their fuel inputs (Delarue et al. (2008), Ellerman
and Feilhauer (2008)). This option to switch from natural gas to coal in their inputs represents
an abatement opportunity to reduce CO, emissions in the short term. High (low) energy prices
contribute to an increase (decrease) of carbon prices. This logic is described by Kanen (2006) who
identifies brent prices as the main driver of natural gas prices which, in turn, affect power prices and
ultimately carbon prices. Bunn and Fezzi (2009) also identify econometrically that carbon prices
react significantly to a shock on gas prices in the short term. Descriptive statistics for energy and

17Note for a normally distributed random variable skewness is zero, and kurtosis is three.

18Such a fat-tailed distribution may suggest a GARCH modeling as GARCH models better accommodate excess kurtosis in the
data.

19Note however that it appears difficult to motivate other type of models, for example processes that are able to account for
long memory, given the relatively short time horizon at hand since the creation of the EU ETS.
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Figure 4

Empirical autocorrelation function of EUA returns (left) and squared returns (right) for the ECX
futures contracts of maturity December 2008 (top) and December 2009 (bottom)

global commodity markets returns may also be found in Table 3.

3.2.1 Brent, Natural Gas, and Coal Prices

11

For energy prices, we use the daily Intercontinental Exchange (ICE) Crude Oil Brent Free-of-Board
in $/barrel, the daily ICE Natural Gas 1-Month Forward contract traded in UK pence/Therm, and
the daily coal futures Month Ahead price CIF ARA? traded in €/ton. Price series are converted to
€ using the daily exchange rate provided by the European Central Bank.

Figure 5 presents the price development for the Zeebrugge natural gas next month, Rotterdam coal
futures, and NYMEX crude oil futures price series from April 22, 2005 to January 16, 2009. Natural
gas prices exhibit a strong volatility compared to coal prices. In November 2005 and September
2008, natural gas prices soared to 90€/MWh, and steadily decreased afterwards to 40€/MWh in
February 2008 and December 2008. The competitiveness of natural gas compared to coal may be
more specifically captured during the period going from December 2006 to July 2007. The brent
price series peaked over 80€/barrel from May to August 2008.

20CIF ARA defines the price of coal inclusive of freight and insurance delivered to the large North West European ports, e.g.
Amsterdam, Rotterdam or Antwerp.
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Figure 5

Zeebrugge natural gas, Rotterdam coal futures, and NYMEX crude oil futures prices from April 22,
2005 to January 16, 2009
Source: Reuters

3.2.2 Power, Clean Spark, Clean Dark, and Switch Prices

The price of electricity Powernext (elec in €/MWh) is the contract of futures Month Ahead Base.
To take account of abatement options for energy industrials and relative fuel prices, three specific
spreads are included.

First, the Clean Dark Spread (clean dark spread expressed in €/MWh) represents the difference
between the price of electricity at peak hours and the price of coal used to generate that electricity,
corrected for the energy output of the coal plant and the costs of CO4:

clean dark spread = elec — (coal * +pi % EFcoa1) (1

Pcoal

with p..q; the net thermal efficiency of a conventional coal-fired plant.?!, and EF.,,,; the CO, emis-
sions factor of a conventional coal-fired power plant®?.

Second, the Clean Spark Spread (clean spark spread expressed in €/ MWh) represents the difference
between the price of electricity at peak hours and the price of natural gas used to generate that
electricity, corrected for the energy output of the gas-fired plant and the costs of CO»:

2lj.e. 35% according to Reuters.
22j.e.0.95 tCO2/MWh according to Reuters.
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Figure 6

Powernext electricity futures, Clean Spark Spread, Clean Dark Spread, and Switch prices from
April 22, 2005 to January 16, 2009

Source: Reuters

clean spark spread = elec — (ngas +pt ¥ EFpgas) 2)

Pngas

with ;445 the net thermal efficiency of a conventional gas-fired plant.?®, and EF,, ;s the CO5 emis-
sions factor of a conventional gas-fired power plant?.

Third, the switch price of CO,, expressed in €/MWh, is used as a proxy of the abatement cost:

costygas/MWh — costeoar /MW h
tCO2coa1/MWh — tCO2pgqs /MW h

switch = 3
with cost,gqs the production cost of one MWh of electricity on base of net CO, emissions of gas
in €/MWh, cost...; the production cost of one MWh of electricity on base of net CO; emissions of
coal in €/MWh, tCO2.,,, the emissions factor in CO,/MWh of a conventional coal-fired plant, and
tC 02,445 the emissions factor in CO,/MWh of a conventional gas-fired plant as detailed above.

The Switch price represents the fictional daily price of CO, that establishes the equilibrium between
the Clean Dark and Clean Spark spreads. It is advantageous in the short term to switch from coal
to natural gas, when the daily CO,, price is above the Switch price, and conversely.

23j.e. 49.13% according to Reuters.
24j.e. 0.41 tCO2/MWh according to Reuters.
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As shown in Figure 6, the use of coal appeared more profitable than natural gas during 2005-2006.
Since the beginning of 2007, the difference between both spreads has been narrowing. This situ-
ation therefore provides incentives for power operators to switch the use of natural gas instead of
coal, as represented by the Switch price series. Besides, we may note a peak in the price of electric-
ity from September to November 2008.

3.3 Global commodity markets

Several indices may be used to capture the influence of risk factors linked to global commodity mar-
kets. The main index which is used as the barometer of commodity prices is the Reuters/ Commodity
Research Bureau (CRB) Futures Index. This index is composed of 17 commodities in different sec-
tors such as energy, grains, industrials, livestock, precious metals and softs. It may be viewed as a
broad measure of overall commodity products.?®

The constituent commodities and the economic weighting of these indices aim at minimizing the
idiosyncratic effects of some individual commodity markets.?® As a commodity, the dynamics of
futures allowance prices are very likely to be impacted by the price volatility on global commodity
markets, and thus we include the Reuters/CRB Futures Index as an exogenous factor in our esti-
mates.

Energy and global commodity markets returns are presented in Figure 7.

3.4 Correlation between energy and global commodity markets

We are able to alleviate correlation concerns among energy and global commodity markets by look-
ing at the correlation matrix between the returns of potential explanatory variables in Table 4.

The correlation levels remain reasonable, i.e. strictly inferior to 60%. We thus may use the returns
on energy and global commodity markets as potential factors affecting changes in volatility without
only limited collinearities. Since it is possible to have low correlations together with collinearity, we
have investigated the presence of multicolinearity by computing the inflation of variance between
explanatory variables. These calculations did not reveal serious problematic multicolinearities.?’

In the next section, we present the econometric methodology used along with our estimation re-
sults.

250ther indices coming from brokers in the banking industry may also be used for sensitivity tests purposes. The Dow Jones-
American International Group Commodity Index (DJ-AIGCI) is a benchmark for commodity investments composed of 20
commodities within the energy, petroleum, precious metals, industrial metals, grains, livestock and softs sectors. The Stan-
dard & Poor’s Commodity Index (SPCI) is a cross section of 17 agricultural and industrial commodities traded in the energy,
fibers, grains, meat and livestocks, metals and softs sectors. The Deutsche Bank Commodity Index (DBCI) is composed
of six commodities in the crude oil, heating oil, aluminium, gold, wheat and corn industries, and is designed to track the
performance of investments in a small set of commodities in a variety of currencies.

26See Geman (2005) for a more detailed analysis of the construction, the coverage, the liquidity, and the weighting of each
index.

27To conserve space, those results are not presented here, and may be obtained upon request to the authors.
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4 Empirical analysis

Our econometric methodology may be broadly summarized in four different steps: (i) we estimate
a GARCH model with a dummy variable to compare the level of (unconditional) volatility of the un-
derlying allowance market before and after the introduction of the option market??; (ii) we include
other factors in the variance equation of the GARCH model to control for exogenous effects from
relevant variables; (iii) we discuss volatility dynamics issues during sub-periods; and (iv) we finally
run rolling estimations to further identify the effects of the introduction of the option market on
the volatility dynamics of the EU ETS.

4.1 GARCH model

The GARCH modeling approach adopted here is common for financial time-series, and has been
applied to carbon prices in previous literature (Paolella and Taschini (2008), Benz and Truck (2009)).
GARCH models allow to take into account volatility clustering, indicated by fat-tails in the distribu-
tion of financial time-series.

The impact of options trading is tested by amending the conditional variance equation of the GARCH
model with a dummy variable which takes values 0 for the pre-option period, and 1 for the post-
option period. This methodology has been applied by Antoniou and Holmes (1995), Gulen and
Mayhew (2000) for financial markets, and Antoniou and Foster (1992) for the crude oil market.?
Then, we adopt the structure of a GARCH(1,1) model:

Ry = Bo + f1Ri—1 + € (4)
€t ~ \/ htet Wlth ey ~ sz(O, 1)

he = E(&] | ¢1-1) = ag + a1€;_; + ashy—1 +7DF, (5)

with R, the daily return on carbon futures prices, ¢;_1 is the set of past information, and ¢, the error
term in Eq. (4). In the conditional variance Eq. (5), DF; is a dummy variable taking the value of 0
before the ‘true’ effect of the introduction of options, and 1 thereafter. This dummy variable allows
to test for the influence of the introduction of options on the volatility of the underlying carbon
market. When creating the dummy variable DFy, it is crucial to classify the beginning of the impact
such that it is not too far from the beginning of the ‘true’ effect of the introduction of options. In
light of the liquidity analysis derived from Figure 1, we have set the beginning of the ‘true’ effect
of the introduction of options on May 18, 2007 (instead of October 13, 2006 which is the official
creation of the options market)3°.

28To avoid any confusion, we recall that the dummy variable in the volatility equation of a GARCH model has an effect on the
unconditional level of volatility as it is invariant through time.

29Fleming and Ostdiek (1999) also consider the issue of the impact of derivatives trading on the spot crude oil market, but
using GMM methods as in Bollen (1998).

30Recall that this date was chosen when the volume of calls traded doubled and hit the 1Mton daily volume for the first time.
Also, May 18, 2007 for calls is chosen instead of June 27, 2007 for puts since calls are more actively traded than puts in the
EU ETS. We wish to thank an anonymous reviewer for suggesting to adopt this methodology.
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From left to right: conditional standard deviation for the December 08 and 09 returns from a
GARCH (1,1)

4.1.1 Estimation

We first test Eq. (4) and (5) with a GARCH(1,1) model without the dummy accounting for the in-
troduction of the options market in the variance equation. A preliminary analysis of the returns
autocorrelation shows that modeling the conditional mean as an AR(1) eliminate the autocorrela-
tion for each contract. Those results, presented in Table 5 (regressions (1) and (3)), reveal a strongly
persistent process, as the sum of «; and as is close to 1.3! This characteristic is a classic feature of
financial time-series, and applies for both carbon futures contract of maturity December 2008 and
2009. The time profile of the estimated conditional standard errors from this GARCH model are
respectively displayed in Figure 8 for the December 2008 and 2009 contracts. These graphs are very
similar for both contracts. During our study period, we observe that the carbon market has been
more volatile during the first 300 days, and that the level of volatility is quite lower after April 2006.

4.1.2 Modeling the option market introduction

We estimate Eq. (4) and (5) by introducing the dummy variable DF; capturing the changes in
volatility due to the ‘true’ effect of the introduction of options. Recall that DF; takes the value of 0
before the ‘true’ impact (that was identified from Figure 1) on May 18, 2007, and 1 thereafter.

Estimation results are presented in Table 5 (regressions (2) and (4)).3? In Table 5, regressions (2)
and (4), we may observe that DF; is statistically significant and negative at the 1% level. Despite
the fact that we do not consider here any exogenous factor (see next section), this result appears as
a first evidence of the impact of options introduction in the carbon market. Because options enable
a more complete and liquid market, and a greater flexibility for market participants to hedge their
position on the carbon market, they seem to have a significant impact on the level of volatility in
the futures market. This effect may also be related, while it is difficult to consider it empirically, to

the increasing maturity of the carbon futures market. This is a common argument in finance when

31Namely 0.96 and 0.98 for regressions (1) and (3) respectively.

32Note that we tested for various GARCH specifications, such as the GARCH-M developed in Antoniou and Foster (1992),
which is convenient for the modeling of a time-varying risk premium. None of them provided superior results. Similarly,
various innovation distributions have been implemented (Student ¢, asymmetric Student ¢, GED) to better accommodate
residual kurtosis, without further improving the results presented here.
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Table 5
GARCH(1,1) model estimates with and without dummy variable for the carbon futures returns of
maturity December 2008 and December 2009

EUApgcos EUApgcos

1) 2) 3) 4)

Mean equation

Bo 0.0023** 0.0019** 0.0020 0.0017*
(0.001) (0.001) (0.001) (0.001)

B4 0.1398*** 0.1324%** 0.1348*** 0.1255%**
(0.048) (0.049) (0.048) (0.048)

Variance equation

Qg 7.74e-05"** 9.39e-05"** 5.41e-05"** 7.17e-05***
(1.45e-05) (1.90e-05) (1.24e-05) (1.77e-05)

aq 0.3039*** 0.2870*** 0.2638*** 0.2518***
(0.027) (0.029) (0.025) (0.027)

Qo 0.6544*** 0.6681*** 0.7120*** 0.7156***
(0.037) (0.041) (0.034) (0.039)

Dp -4.62e-05*** -3.69e-05***

(1.47e-05) (1.34e-05)
LL 1680.86 1625.43 1694.26 1638.99

Notes: The dependent variables are the EUA carbon futures return for the contract of maturity December 2008 and December 2009, depending
on the column under consideration. Other variables are explained in eq(4) and (5). Standard errors in parenthesis. *** indicates significance
at 1%, ** at 5% and * at 10%. L L refers to the log-likelihood.

efficiency is under examination. In our framework, because we are more interested in volatility
than in autocorrelation and efficiency, the same argument may not really apply. Indeed, as markets
become more mature and the number of traders is larger, because information is more quickly
reflected in prices the volatility may be expected to increase in view of the well-known volatility-
volume relation. The latter result does not imply however necessarily that the dynamic component
of volatility has not been impacted, as we discuss below. In addition, it is worth noting that the
estimation results obtained in Table 5 concerning the introduction of the option market may be
driven by exogenous factors affecting the volatility of carbon futures returns. As shown by Mansanet
et al. (2007), Alberola et al. (2008), Chevallier (2009) and Hintermann (2010), the carbon market is
impacted by various energy prices and macroeconomic risk factors. In other words, a change in the
level of the volatility may be hidden by the presence of other risk factors. To deal with this issue, we
now introduce exogenous factors in the variance equation of the GARCH model.

4.2 Exogenous variables in the conditional variance equation

A problem in Section 4.1 is that the date of the dummy variable is chosen a priori. Of course, this
choice is intuitive since we are interested in modeling how the introduction of the option market
affects volatility in the EU ETS. However, the impact of the introduction of the option market may
have arisen at a date different from its official opening. Furthermore, other structural breaks may
have affected the carbon market and the dynamics of conditional volatility. Detecting these breaks
appears crucial to obtain a correct modeling of the conditional standard error. To do so, we imple-
ment below a test for structural breaks in the unconditional variance at unknown location.
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Unconditional variances with break

Note: the blue line represents the squared returns and the red line represents the time profile of the sample
variance for the different periods detected from the breaks.

4.2.1 Structural breaks in the unconditional variance

Inclan and Tiao (1994) and Sans6, Aragé and Carrion (2004) have proposed a test for detecting a
break in the unconditional variance at unknown date.?3

Our sample of returns {R;}]_; contains T observations. The test statistic is AIT = sup|T~"°Gy|
where Gy, = A=05[Cy—(k/T)Crl, C, = Yop_y B3 A = F0+2 30, [1=U(m4+1) " 40, 40 = T~ 0, (R —
62)((R?_, — 6?), 6% = T~'Cr. 4 represents a nonparametric adjustment factor used to correct for
non dependent processes. It is based on a Bartlett kernel with the lag truncation parameter m.3*
The value of k that maximises |7 ~%-°G}| is the estimate of the break date. Critical values are given

in Sans6, Arag6 and Carrion (2004).

Inclan and Tiao (1994) developed the Iterated Cumulative Sum of Squares (ICSS) algorithm for de-
tecting multiple breaks in variance.?®> We apply this algorithm to our AIT statistics to find possible
break dates in the unconditional variance of returns.

The AIT test statistic and the ICSS algorithm leads us to detect five breaks in the unconditional
volatility. Figure 9 shows these breaks with their date. This graph also displays the time profile
of the sample unconditional variance for the six periods defined by these breaks and the squared
returns, considered as a proxy for the shocks hitting the market.

One obvious break in unconditional volatility occurs during the third (and shortest) period from
1=24/04/06 to t=15/05/06. During this time period, the market is highly volatile, as reflected by the
high values of the squared returns. The sample variance reaches its highest value for this time
period. This increase in unconditional variance can be connected with the first compliance break

33Tests for breaks in the unconditional variance have been recently extended by Andreou and Ghysels (2002). See also Rapach
and Strauss (2008).

34The lag truncation parameter is chosen as m = E[A(T/100)'/4] where T is the number of observations.

35A complete description of this algorithm can be found in their paper.
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in the time-series of CO- returns due to the verification of 2005 emissions in April 2006 (Alberola et
al. (2008)).

We identify two periods where the unconditional volatility increases: the first one going from the
beginning of the sample to ¢; =27/7/05, and the second one from ¢, =20/11/06 to t5=16/07/07. We
observe however that during these periods the sample variance does not increase significantly, and
thus we do not further comment these breaks. In addition, only a minor increase in volatility is
detected using the algorithm around the time options begin to be traded with significant volumes
(i.e. March 2007).

More importantly, to control for the sharp increase in volatility due to the 2006 compliance event,
we include the dummy variable D 4ppros Which takes the value of 1 during the period going from
April 25 to June 23, 2006, and 0 otherwise. This variable reflects the institutional development of
the EU ETS that occurred in April 2006 during Phase I (Alberola et al., 2008).

4.2.2 Introducing exogenous variables

As highlighted in previous literature (Christiansen et al. (2005), Mansanet-Bataller et al. (2007),
Alberola et al. (2008), Chevallier (2009), Hintermann (2010)), the main risk-driving factors on the
carbon market are linked to institutional decisions and energy prices. Another source of risk may
be linked to the variation of global commodity markets, which may be captured by various indices.

To take into account the impact of these factors on the volatility of carbon futures (besides consid-
ering the impact of the option market), we include the volatility of several energy- and commodity-
related factors. We compute the sample standard deviations by using a moving window of 25 days
(about one trading month) for all factors described in the data section. This methodology is in line
with Hadsell and Shawky (2006) and Oberndorfer (2008), and has more formal support than “de-
meaning” the mean equation (as in Bologna and Cavallo (2002) for instance) when the quantity of
interest is the volatility.

For energy variables, we use the volatility of returns on Brent, coal and natural gas prices, as well as
the volatility of clean dark and clean spark spreads and the switch price, to proxy for the influence
of power producers’ fuel-switching behavior on carbon price changes. The relationship between
carbon price changes and power producers’ fuel-switching behavior appears especially important
to bear in mind. Fuel-switching constitutes an important determinant of the CO,, price, given the
proportion of allowances distributed to the power sector, and the arbitrages being made by pro-
ducers concerning their energy-mix including the CO, costs (Delarue et al. (2008), Ellerman and
Feilhauer (2008)). For global commodity markets, we include the Reuters/Commodity Research
Bureau (CRB) index.

We test below for the potential impact of vol brent, vol gas, vol coal, vol power, vol clean spark,
vol clean dark, vol switch, and vol CRB on ECX futures returns volatility modelled using a GARCH
framework, by including the estimated volatility of returns of these potential explanatory variables
into the variance equation.
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4.2.3 Results

Equation (5) is modified as follows:

he = ap + ar€;_; + ashi—1 +YDF, + ¢ X, (6)

with X; a vector of exogenous variables including the dummy variable D 4pros for the April 2006
structural break, estimated standard deviations for energy and the C'RB variables.

As shown in Table 6, estimates from our extended model feature the statistical significance of sev-
eral factors for 2008 contract (regressions (1) to (4)) and for the December 2009 (regressions (5) to
(8)) as well. Some of these significant variables are not exactly the same for both contracts and their
significance is more robust for the December 2009 contract.

Concerning energy variables, vol clean spark and vol clean dark are significant for both the Decem-
ber 2008 and 2009 contracts alone or in conjunction with other regressors.

The dummy is almost always significant at the 1 or 5% level thereby providing evidence that our
result in the previous section are not driven by exogenous factors.

Concerning energy variables, vol clean spark, vol clean dark, vol oil, vol coal and vol power are
significant for the December 2008 contract while vol oil, vol clean spark and vol clean dark sig-
nificantly impact the volatility of the December 2009 futures contract. The rationale behind the
negative role of coal on CO, price volatility is that, when confronted to a rise of the price of coal
relative to other energy markets, firms have an incentive to adapt their energy mix towards less CO2
intensive sources, which yields to less needs of EUAs. This result is conform to previous literature
(Mansanet-Bataller ef al. (2007), Alberola et al. (2008)). The negative sign of vol spark for both
contracts may be explained by the rather decreasing price pattern of natural gas by contrast to coal
during our sample period®®. vol oil positively impacts the volatility returns of CO, prices for the
December 2009 contract. This positive impact can result from the fact that oil is an input of instal-
lations covered by the ETS and that changes in its price also affect economic activity. Therefore, an
increase in oil price volatility induces uncertainty about economic perspectives which can increase
volatility on the CO, market. Finally, note that the D 4 pros dummy for institutional developments
is statistically significant (regressions (2) and (6)), but not the CRB proxy for global commodity
markets. The vol switch variable is never significant in our regressions, so we do not report results
related to this variable (regressions (1) and (5)).

To conclude, we have shown that even after controlling for other relevant energy, institutional and
risk factors, the DF; dummy variable accounting for the introduction of the option market remains
significant. This result is very robust to the introduction of factors known as carbon price drivers,
such as institutional decisions, energy and global commodity markets (Christiansen et al. (2005),
Mansanet-Bataller ef al. (2007), Alberola et al. (2008), Hintermann (2010)). The finding appears ro-
bust enough to be an evidence of the impact of the introduction of options. We therefore conclude
that options introduction had a noticeable impact on the unconditional volatility of CO, returns.

36While the clean spark spread is the profit contribution of using gas for electricity production, the clean dark spread is the
profit contribution for using coal for electricity production. Depending on the relative price of gas and coal, power producers
switch between their fuel inputs when one source of energy becomes relatively cheaper to the other. Hence our comments
of the vol clean spark variable based on that economic logic.
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From left to right: conditional standard deviation for the December 08 and 09 returns from a
GARCH (1,1) with a dummy for the option market

The conditional variances for both contracts displayed in Figure 10 show indeed a slight decrease
in variance in the post “options introduction” period.

4.3 Sub-period decomposition

Besides, we estimate GARCH models during two sub-periods to study the changes in volatility dy-
namics of carbon futures returns before and after the introduction of options. According to Anto-
niou and Foster (1992), this procedure allows to investigate empirically the effects of the introduc-
tion of the option market by using both pre- and post-options volatility measures. Here, we do not
precisely deal with the impact of the introduction of the option market on the unconditional vari-
ance, but rather on its dynamics (the nature of volatility) in the spirit of Antoniou and Foster (1992),
who studied the volatility of futures and spot prices for brent crude oil products.

The methodology consists in comparing the GARCH coefficients before (Sample #1) and after (Sam-
ple #2) the introduction of the option market, by running separate estimates during sub-periods.
Estimation results are presented in Table 7 (regressions (1) to (4)).

Our results are as follows. First, regarding the behavior of the autoregressive coefficient, we observe
a significant decrease. The coefficients which were significant and of a value around 0.18 are not
significant anymore, thus leading to confirm a convergence towards the random walk in the second
sub-period.3” Second, ARCH and GARCH coefficients are quite different in the two subperiods. For
Sample #1 (Table 7, regressions (1) and (3)), the process is very persistent.>® For Sample # 2 (Table
7, regressions (2) and (4)), we observe that the value a; + «s is close to 0.90, which suggests that
the variance process as a whole is less persistent. However, the level of the ARCH coefficient, which
represents the reaction to new information, is quite low in the second sub-period in comparison
with its level in the first sub-period, suggesting that the informational efficiency of the carbon mar-
ket has decreased. Indeed, the ARCH coefficient being an indicator of how news are impacting the

37We provide some additional informations on this decrease using rolling estimation in the next section. A formal analysis
of the efficiency of the carbon market remains nevertheless beyond the scope of the present paper and is left for future
research.

38There is only a limited interest in estimating the so-called IGARCH model (Engle and Bollerslev, 1986) by constraining the
sum of the ARCH and GARCH coefficients to one as the estimates in the present regressions do not bind the constraints.



Table 7

GARCH(1,1) model estimates before and after the May 18, 2007 (volumes in option trading reached
1Mton daily) for the December 2008 and 2009 carbon futures returns

EUApEgcos EUApEcos
1) 2) 3) 4)
Mean equation
Bo 0.0025** 0.0009 0.0023* 0.0009
(0.0012) (0.0012) (0.0012) (0.0012)
51 0.1904** 0.0012 0.1864*** 0.0041
(0.0640) (0.0740) (0.0652) (0.0733)
Variance equation
ap 0.0001*** 2.61e-05 8.05e-05***  2.42e-05
(2.24e-05) (1.72e-05) (2.00e-05) (1.55e-05)
o 0.3857*** 0.1073* 0.3124%** 0.1116**
(0.0359) (0.0555) (0.0350) (0.0538)
Qo 0.5745%** 0.8358*** 0.6638*** 0.8332***
(0.0437) (0.0832) (0.0438) (0.0790)
LL 1134.57 555.51 1140.14 561.64

25

Note: The dependent variables are the EUA carbon futures returns for the contracts of maturity December 2008 and December 2009,
depending on the column under consideration. Other variables are explained in Eq. (4) and (6). Standard errors in parenthesis. *** indicates
significance at 1%, ** at 5% and * at 10%. L L refers to the log-likelihood.

volatility, a lower value for the ARCH coefficient is an indication of a less informationally efficient
market (the variance adjustment following the arrival of new information is slower)3%?, In other
words, a market where the GARCH coefficient is dominating exhibits higher autocorrelation*! in
variance which is the case in sample # 2.4

We did not find evidence of the influence of energy variables on the volatility of CO» returns dur-
ing sub-periods. Overall, these results suggest that the dynamics and nature of the variance are
quite different before and after the introduction of the options market, which may be inferred from
GARCH standard deviations plots in Figure 8. However, note that the presented difference in the
estimated parameters (in particular the lower coefficient in second period) is not necessarily a re-
sult of the introduction of options. Therefore, we may carefully conclude from these results that the
estimated coefficients are not constant over the period of interest*3.

4.4 Checking the time dependency of the model

In this section, we use a rolling estimation procedure to detect some change in the dynamics of the
conditional volatility. We estimate the same GARCH (1,1) model as in section 4.1.1. for a rolling
window of L=200 observations. We obtain a sequence of time indexed estimates of the autoregres-
sive coefficient {f3,;—r+1,.} and the coefficients of the GARCH model: {agj;—r11,:}, {@1t-r41,¢}

39GSee Conrad et al. (2010) for other techniques to investigate the reactions of returns or volatility of returns to new information.

40Recall that informational efficiency examined through the values for the GARCH coefficients of the efficiency generally
examined using estimates of the autocorrelation of returns are two different, but non-contradictory, concepts of efficiency.

4lpersistence in the volatility process (sum of ARCH and GARCH coefficients) and autocorrelation in the volatility process
(GARCH coefficient) are distinguishable features of the volatility process.

4The same pattern with the December 2009 contract.

43We wish to thank one anonymous reviewer for highlighting this point.
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and {as,—1+1,} where the ¢-L,t denotes the sample used for each estimation. Our first estimation
is obtained for the sample ending in t=200=03/02/2006.

Figure 11 shows the rolling estimate of the autoregressive coefficient in the conditional mean re-
gression. Figures 12 and 13 show the estimates for the ARCH and GARCH coefficients, respec-
tively.** The estimates of the GARCH model clearly show some instability in the estimated coeffi-
cients. Changing patterns in the GARCH coefficients therefore indicate changes in the dynamics of

conditional volatility.

A first sudden break appears at date ¢ = 258 = 05/05/2006 when the ARCH coefficient rises from 0.4 to
1, and the GARCH coefficient decreases from around 0.6 to 0.4. Both of these changes suggest that
the impacts of shocks on conditional volatility were especially important during this time period. It
coincides with the strong adjustment of market operators’ expectations following the publication
of the first report of verified emissions by the European Commission (Alberola et al., 2008).

The second change in the estimated coefficient occurs at time t=451=05/02/2007. The ARCH co-
efficient suddenly drops after this date, while the GARCH coefficient increases. This result may
also be interpreted in light of the 2007 compliance event, which relates to the verification of 2006
emissions. Market operators have anticipated the release of the report of the European Commis-
sion, and therefore the adjustment in market expectations occurs earlier than in 2006. Due to the
“youth” of this commodity market and rules in the making concerning the second trading period
(2008-2012), the first years of operation of the EU ETS were characterized by strong reversals in
expectations around yearly compliance events (Chevallier ef al., 2009).*> Overall, these rolling win-
dows estimates do not support the view of a strong effect of option introduction on volatility dy-
namics. Nevertheless, the continuing change in volatility may be partly due to option introduction,
despite this hypothesis could hardly be investigated further.

Once agents have integrated this information, we do not observe visually other changes in the esti-
mates of the ARCH coefficient, except for the GARCH coefficient which increases after t=636=11/10/2007.

5 Conclusion

This article investigates the effects of the introduction of the option market on the volatility of the
EU ETS. Following a brief review of key design issues on the EU ETS, we have presented the main
characteristics of both the futures and option markets on ECX. Then, we have detailed our econo-
metric methodology, which consists in capturing both unconditional and dynamic components
of the volatility of carbon futures returns with GARCH models, rolling estimates and endogenous
structural break detection following the introduction of ECX options. Based on the liquidity of
traded options on a daily basis, we have been able to pinpoint the more ‘correct’ date of the in-
troduction of options as being May 18, 2007. This date has been identified as the number of calls
traded hitting for the first time the daily volume of 1Mton, and is thus different from the official
creation date of the options market (October 13, 2006). This methodology has been robust to doc-
ument changes in volatility on equity markets, but has not been applied yet on the carbon market.

44Note that during the occurrence of large shocks (such as compliance breaks), volatility explodes which yields to larger con-
fidence intervals as displayed by the blue dashed lines.
451n particular, National Allocation Plans for Phase IT were more strictly validated than during the first trading period.
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Based on daily data from April 2005 to April 2008, our results from our GARCH analysis suggest
that the level of volatility has been significantly modified around this period. This static analysis
is taken one step further with the investigation of the dynamic behavior of CO return volatilities
using rolling estimates with a window of 200 days. These estimations reveal the presence of shocks
related to yearly compliance events in the EU ETS during April 2006 and February 2007. Additional
analysis through an endogenous break test (Inclan and Tiao, 1994) provides evidence of breaks in
the unconditional volatility during the period under consideration while it appears difficult, due
to the nature of these tests (CUSUM), to relate these breaks to options introduction. As in Anto-
niou and Foster (1992), we also find that GARCH estimates are statistically different before and after
the introduction of the derivatives market, thus leading to conclude that the nature (dynamics) as
well as the level of volatility have changed. We have run sensitivity tests with institutional vari-
ables, energy and global commodity markets to capture the likely influence of other factors on the
volatility of futures returns. Collectively, these results are conform to the view that options do not
systematically impact the stability of the underlying market and may even have a stabilizing effect.
Our results using the two sub-periods indicate a convergence to the random walk (in view of the
decreasing autoregressive coefficient), while informational efficiency seems to have decreased (as
indicated by a larger GARCH coefficient during the second sub-period).

A potential extension of this work using intraday data may be pursued relying on Liu and Maheu
(2009), who test for breaks in realized volatility with Bayesian estimation and an autoregressive
modeling of realized volatility (Corsi (2004), Andersen et al. (2007, 2009)). These methods have not
been used to detect structural breaks following the introduction of derivative products yet.
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1 Introduction

The distribution of financial asset returns is often modeled following mixtures of normal distributions
that have different parameters (Dacorogna et al., 2001). The distributional and dynamic properties
of volatility appear especially important for risk-management purposes, since different specifications
will yield to various pricing structures (Guillaume et al., 1997). The investigation of such properties
has been revivified by the recent literature on realized volatility, which relies on the use of intraday
data. Since the seminal contributions of Andersen, Bollerslev, Diebold and Labys (henceforth ABDL,
2001), Andersen, Bollerslev, Diebold and Ebens (henceforth ABDE, 2001), and Barndorff-Nielsen and
Shephard (henceforth BNS, 2002), among others, the literature on realized volatility measures has

been very prolifict.

This article uses tick-by-tick data of COy emissions allowances, valid for compliance under the EU
Emissions Trading Scheme (EU ETS), exchanged on the European Climate Exchange (ECX) based
in London. More particularly, we use the futures contract of maturity December 2008 to examine the
unconditional and conditional (dynamic) distributions of the ECX COs emissions futures volatility.
This new analysis appears important on such an emerging market, where the understanding of the
volatility properties of CO5 prices will allow a better characterization of the relevant stochastic process
to price derivatives (Tucker (2001), Chevallier et al. (2009)). It appears also of primary importance to
hedge against various kinds of institutional, economic or financial risks (see Busch and Hoffman, 2007).
Hence, the research question developed in this article may be of precious use for risk-management

purposes, which requires a careful understanding of the volatility of COs prices.

The statistical properties of daily realized volatilities in futures markets has been investigated, among
others, in Thomakos and Wang (2003). Their analysis of D-Mark, E-Dollar, S&P500 and T-bonds
shows that standard deviations exhibit long memory, while standardized returns are serially uncorre-
lated. They also found that the unconditional distributions of daily returns’ volatility are leptokurtic
and highly skewed to the right, while the distributions of standardized returns and logarithmic stan-

dard deviations are close to a Gaussian distribution.

Luu and Martens (2003) test the mizture-of-distributions-hypothesis (MDH) (Clark (1973), Tauchen
and Pitts (1983)) by comparing volatility models using daily and intraday data. Our approach consists
in applying this research question to the study of ECX CO; emissions futures. The first use of intraday
data for CO4y emissions markets may be related to Benz and Klar (2008), who investigate the price
discovery between various exchanges. To our best knowledge, our article constitutes the first attempt

to derive the volatility properties of CO5 emissions futures using realized measures.

Our data set contains one year of tick-by-tick data from ECX COg emissions futures, corresponding
to the 2008 futures contract. The choice to restrain our analysis to the 2008 contract is motivated
by (i) the erratic behavior of spot prices during 2005-2007 due to banking restrictions (Alberola and
Chevallier, 2009), which proved to be less robust than futures for price signalling in the medium-term;

and (7)) the validity of the 2008 contract during Phase IT (2008-2012), which offers the “bankability”

4Surveys may be found in Zivot (2005), McAleer and Medeiros (2008), Andersen and Benzoni (2009).



of COy emissions allowances until the end of Phase IIT (2013-2020).

Since the end of 2007, both the liquidity of the EU ETS and the availability of high-frequency data
have been increasing. ECX emissions futures are indeed the most heavily traded emissions contracts,
followed by spot and option prices. The volume of intraday transactions recorded on the ECX CO4
emissions futures market is approximately equal to one tenth of Foreign Exchange (FX) markets, which
are opened 24 hours. With an average of 700 trades per day and 50 seconds between each transaction,
the tick-by-tick data gathered for ECX COs emissions futures is somewhat comparable to the values
found on other financial markets, such as the level of daily transactions for the D-Mark as documented
in Thomakos and Wang (2003).

This article provides the first empirical application of the methodology by ABDL (2001) and ABDE
(2001) to ECX COg emissions futures. We use one year of 15-minute returns® from the futures
contract to estimate the daily realized volatility, and hence to describe the distribution and time-
series properties of ECX COs emissions futures. Compared to previous literature, the estimates of
intraday volatility based on realized measures are more accurate than the estimates based on daily
data which are used in Paolella and Taschini (2008), Benz and Truck (2009), Daskalakis et al. (2009)
and Oberndorfer (2009), among others.

Our methodology consists in dealing with the distributional, dynamic, and forecasting properties
of realized volatility for ECX COs emissions futures. We study the unconditional distributions of
realized volatility measures, while testing for several transformations to approach normality. We also
test whether the MDH holds for ECX COg emissions futures. Then, we investigate the dynamics of
realized volatility measures using an Heterogeneous Autoregressive Model of the Realized Volatility
(HAR-RV) developed in Corsi (2009) versus GARCH specifications. We finally propose a forecasting
exercise, by testing the predictive accuracy of the HAR-RV model versus other models of conditional

volatility based on daily data.

Our main results may be summarized as follows. We first document the near normality of the loga-
rithmic form of realized volatility measures for the ECX 2008 futures contract. This is standard in
financial literature, as the “spot volatility” which governs the Brownian motion is generally assumed to
be lognormally distributed. Nevertheless, the standardized returns (using realized volatility) are not
normally distributed, which stands against the MDH. Standardized returns using GARCH volatilities
are more normally distributed, which is not usual for financial series. Finally, the HAR-RV model
with a daily and a weekly component outperforms unambiguously GARCH specifications in terms of
dynamic modeling and forecasting accuracy. The latter result is due to the superiority of realized

measures in estimation using intraday data over lower frequency variations.

Several directions may be pursued in extension of our work. The investigation of jump components in

realized volatility measures appears of primary interest, by using standardized bi-power and tripower

5The optimal sampling frequency is chosen so as to limit the impact of market microstructure effects.

60ur analysis remains univariate. Using high-frequency data, a multivariate analysis such as Cartea et al. (2007) or
Bunn and Fezzi (2007) does not seem appropriate, because of the complex relationships linking CO2 emissions and
energy markets. Thus, the study of realized covariance and realized correlations of ECX COg emissions futures with
other high-frequency energy futures price series is not considered here.



variation (Andersen, Bollerslev and Diebold, henceforth ABD, 2007). The formal determination of
the optimal sampling frequency also appears as a promising area for future research using specific

microstructure noise detection tests (see Awartani et al., 2009).

The remainder of the article is organized as follows. Section 2 provides an overview of futures trad-
ing on the EU ETS. Section 3 reviews estimation methods for realized volatility, discusses optimal
sampling frequency issues and maturity effects characteristic of futures contracts. Section 4 studies
the unconditional distribution of ECX CO, emissions futures returns and realized volatility, as well
as the distributional properties of returns and standardized returns, using several transformations for
realized volatility measures. Section 5 investigates realized volatility dynamics, and especially long
memory components using the HAR-RV model. Section 6 provides a forecasting exercise to test the
accuracy of the HAR-RV model against the predictive power of daily GARCH forecasts. Section 7

concludes.

2 The European CO, emissions futures market

In this section, we present first the key design issues on the European COs emissions futures market,
second we discuss the main characteristics of futures trading on ECX, and third we proceed with a

preliminary analysis of the intraday data used.

2.1 Design and transactions growth

Let us discuss first some key design issues, as well as the growth of transactions recorded on the

European CO4 emissions market since its creation on January 1, 2005.

2.1.1 Key design issues

The European Union Emissions Trading Scheme (EU ETS) has been created by the Directive 2003/87/CE.
Across its 27 Member States, the EU ETS covers large plants from COs-intensive emitting industrial
sectors with a rated thermal input exceeding 20 MWh. One allowance exchanged on the EU ETS cor-
responds to one ton of COs released in the atmosphere, and is called an European Union Allowance
(EUA). 2.2 billion allowances per year have been distributed during Phase I (2005-2007). 2.08 billion
allowances per year will be distributed during Phase II (2008-2012). With a value of around €20 per
allowance, the launch of the EU ETS thus corresponds to a net creation of wealth of around €40
billion. In January 2008, the European Commission extended the scope of the EU trading system to
other sectors such as aviation and petro-chemicals by 2013, and confirmed its functioning for a third

Phase until 2020.

2.1.2 Transactions growth

During Phase I of the EU ETS (2005-2007), the total volume of allowances exchanged has been steadily

increasing. The number of transactions has been multiplied by a factor four between 2005 and 2006,



going from 262 to 809 million tons. This increasing liquidity of the market has been confirmed in 2007,
where the volume of transactions recorded is equal to 1.5 billion tons. This peak of transactions may
be explained by the growth of the number of contracts with delivery dates from December 2008 to
December 2012, which represented 4% of total exchanges in 2005, and 85% in 2007. These transactions
reached €5.97 billion in 2005, €15.2 billion in 2006, and €24.1 billion in 2007, thereby confirming

the status of the EU ETS as the largest emissions trading scheme to date in terms of transactions.

In 2008, the carbon market was worth between €89 billion and €94 billion, up more than 80% year-
on-year, according to analysts (Reuters). The launch of secondary certified emission reduction (CER)”

contracts on ECX certainly fostered this growth rate of transactions.

2.2 Futures trading

As discussed below, due to the non-reliable behavior of spot prices during Phase T (2005-2007), we
decide to use futures prices valid for Phase II (2008-2012). More specifically, we choose to investigate
in this article the volatility dynamics of the December 2008 futures contract traded in €/ton of CO2
on ECX.

2.2.1 Price development

ECX futures trading started on April 22, 2005 with varying delivery dates going from December 2005
to December 2012. Futures contracts with vintages December 2013 and 2014 were introduced on April
8, 2008. Daily closing prices trade at €13.32/ton of COq as of January 15, 2009, and have reached a
maximum price of €32.90/ton of CO5 in 20088.

Insert Figure 1 about here

Figure 1 shows the futures price development for contracts of maturities December 2005 through
2014 from April 22, 2005 to January 16, 2009. We may observe that futures prices for delivery
during Phase IT (2008-2012) proved to be much more reliable than futures prices for delivery during
Phase T (2005-2007), due to the banking restrictions enforced between the two Phases (Alberola and
Chevallier (2009)). Market observers noticed a divergence between Phase I spot and futures prices
- which decreased towards zero - and Phase II futures prices - which conveyed a medium-term price
signal around €20/ton of COy throughout the historical data available for the second phase of the
scheme. The price development for Phase IT futures comprises a lower bound around 15-€ /ton of COq

in April 2007, and an upper bound around 35%€/ton of COs in November 2008.

7 According to the article 12 of the Kyoto Protocol, Credit Development Mechanism (CDM) projects consist in achieving
GHG emissions reduction in non-Annex B countries. After validation, the UNFCCC delivers credits called CERs that
may be used by Annex B countries for use towards their compliance position. CERs are fungible with EU ET'S allowances
with a maximum limit of around 13.4% on average.

8Tn the longer term, analysts forecast EUA prices of €20-25/ton of CO2 over Phase IT and €25-30/ton of CO2 over
Phase III, which will run from 2013-20 (Reuters).



2.2.2 Contract specifications

The ECX COs emissions futures contract is a deliverable contract where each member with a position
open at cessation of trading for a contract month is obliged to make or take delivery of emission
allowances to or from national registries. The unit of trading is one lot of 1,000 emission allowances.
Each emission allowance represents an entitlement to emit one tonne of carbon dioxide equivalent gas.
Market participants may purchase consecutive contract months to March 2008, and then December
contract months from 2008 to 2012°. Trading occurs from 07:00AM to 05:00PM GMT. Allowances
delivery typically occurs by mid-month of the expiration contract date. The ECX December 2008
futures contracts expired on December 15, 2008. The first delivery of the underlying CO5 allowance
occurred on December 16, 2008, and the last delivery on December 18, 2008.

2.3 Preliminary analysis of the intraday data

Our sample contains one year of tick-by-tick transactions for the ECX futures contract of maturity
December 2008, going from January 2 to December 15, 2008. This is equivalent to 240 days of trading
after cleaning the data for outliers, and until the expiration of the contract. Intraday data with a one-
year time horizon have been studied, for instance, by Taylor and Xu (1997) for the DM/$ exchange
rate. The total amount of intraday observations in our sample is equal to 167,004. The ECX CO4
emissions futures tick data thus corresponds to one tenth of the transactions recorded on FX markets
- which are opened 24 hours and reach more than 15,000 trades per day. However, this level of
transactions appears comparable to the values found for other markets. For instance, Thomakos and
Wang (2003) note that the average number of price changes per day is 163 for the Eurodollar, 3,366 for
the S&P500, and 1,710 for T-bonds. The average amount of transactions for the ECX CO5 emissions
futures tick-by-tick data is equal to 700 trades per day. This corresponds to an average of 50 seconds

between each transaction.

In the next section, we detail how to compute realized volatility measures.

3 Estimation of realized volatility

In this section, first we review the theoretical background to derive realized volatility measures from
intraday data, second we present different estimation methods, third we discuss the issue of optimal

sampling frequency choice and the maturity effect in the futures contract.

3.1 Theory

Let p(t) denote a logarithmic asset price at time ¢. Abstract from a jump process, the continuous-time
diffusion process generally employed in asset and derivatives pricing may be expressed by a stochastic

differential equation as:

9Note spreads between two futures contracts may also be traded.



dp(t) = p(t)dt + o(t)dW(t) with 0<t<T (1)

with u(t) a continuous and locally bounded variation process, o(t) a strictly positive cadlag (right
continuous with left limits) stochastic volatility process, and W (t) a standard Brownian motion. Note
that the formulation in equation (1) is very general, includes most of the processes generally used in

standard asset pricing theory (see ABDL (2001)) and may accommodate for long memory components.

Next, let us consider the quadratic variation (QV) for the cumulative return process r(t) = p(t) —p(0):

[r,r]t:/o o?(s)ds (2)

The QV simply equals the integrated volatility of the process described in equation (1). Now, assume
that returns are sampled on a A-period yielding r; A = p(t) — p(t — A). The realized variance'® (RV)
is defined as the sum of the corresponding 1/A, which is assumed to be an integer for simplicity,

high-frequency intraday squared returns, or:

1/A
RVia(A) = ZT?Jrj‘A,A (3)
7j—1

Andersen and Bollerslev (1998) followed by ABDL (2001) and BNS (2002) among others demonstrated
that, as the sampling frequency of the underlying returns increases, the RV converges uniformly in

probability to the increment of the QV process, or:

RViar(A) — /0 o2(s)ds ()

when A — 0. Thus, RV is a consistent estimator for the integrated volatility used throughout asset
pricing theory. In other words, as the sampling frequency increases, the estimation error of the RV

diminishes.

3.2 Estimation methods

Theory suggests that optimal sampling corresponds to sampling at the highest possible frequency.
In practice, this is far from being true as shown in a series of articles starting with Andersen and
Bollerslev (1998). In fact, the logarithmic return process which is truly observed does not comply
with the hypothesis of a semimartingale for the underlying process, which is a necessary hypothesis
for deriving results discussed in the previous section. This issue is discussed in ABDL (2001) and
Zhang et al. (2005) for instance. The latter authors describe this phenomenon as emerging from
market microstructure problems, whose main examples are the existence of a bid-ask spread, non-

synchronous trading, etc.

10Some authors refer to this as realized volatility, but we reserve this term for the square root of realized variance that is
also considered in this article.



To mitigate the impact of microstructure noise, various methodologies have been employed in the
empirical financial literature. These include the determination of the optimal A as described in Ait-
Sahalia et al. (2005) after the noise has been modelled, the use of subsampling schemes as in Zhang
et al. (2005), resorting to pre-filtering methods as in Andreou and Ghysels (2002) or kernel-based
methodologies as in Zhou (1996) or Hansen and Lunde (2006). In order to investigate the relevance
of different sampling methods for the analysis of the ECX emissions futures 2008 contract, we do not
only follow ABDL (2001) as is the case in most of the existing empirical literature, but we also consider

two other methodologies.

First, we consider the traditional un-weighted estimator used for instance in ABDL (2001) and BNS
(2002). This estimator is the natural estimator in view of theoretical developments in quadratic
variation and perfectly fits equation (3), as it is the sum of squared realized returns on a given

sampling frequency. For each day d and sampling frequency 1/m, we compute:

Ry =32, ®
i=1

Second, we estimate realized volatility following Zhang et al. (2005). Their sub-sampling method
appears particularly relevant for use with the ECX emissions futures intraday data, because of the
limited number of daily transactions compared to other more actively traded financial assets. The
idea behind sub-sampling is that when a given sampling frequency, say 1/m, is chosen in light of the
microstructure noise limited impact, a large share of the data is ignored. To fully account for the
available information, Zhang et al. (2005) propose to average the measure of realized volatility at 1/m

frequency but for different starting times. Let:

m+p
D D (6)

i=1+p
be the realized variance measure at sampling frequency 1/m, but with the first observation chosen
at 1 4+ p with p < % By evaluating RV4™P for starting times 1,1 4+ p,1 + 2p, ...,2 and keeping the
sampling frequency 1/m, we move our estimation window, and thus exploit a larger part of the data

set. Zhang et al. (2005) then propose to average the measure considering all starting values.

Third, we retain a kernel-based estimator as first proposed in Zhou (1996). After testing for various
kernel estimates, such as the modified Tukey-Hanning kernel, our choice goes to the Bartlett kernel-
based estimator, which shows better performance with respect to the variability of the estimators with

respect to their inputs'!.

We then consider, as is now common in the literature'?, three different proxies for volatilities. First, we
study the realized variance as defined in equation (3) with a sampling frequency of 15 minutes, in view

of the volatility signature plots in Figure 3 (see more on this below). Second, following ABDL (2001)

HHansen and Lunde (2006) discuss this issue, and provide more details on the practical application of kernel-based
methods.
123ee ABD (2007) and references therein.



we examine the square root of the realized variance, denoted realized volatility, or Rth/ 2, Third, we
consider the logarithm of the realized volatility, or log(Rth/ 2)7 also known for its convenient properties
in small samples'3. As will be discussed below, the logarithmic transformation represents one among

other power transformations. A better choice may emerge following Gongalves and Meddahi (2008).
Insert Figure 2 about here

Figure 2 plots the three proxies of volatilities (left, middle and right panels) for the three estimation
methods selected (top, middle and bottom panels). The time-series reveal the presence of jumps and
structural breaks that may be taken into account using multipower variation measures.'* Note also
that the time-series on the left panel reflect the exclusion of the “once-in-a-generation” (Cai et al.
(2001), ABDL (2003)) anomalous carbon price movement detected on October 13, 2008 which seems
to coincide with the depressing effect of the “credit crunch” crisis on the prices of global commodity

markets.
Insert Table 1 about here

Table 1 reports the descriptive statistics for the three proxies of volatility with the three estimation
methods. We observe that the daily realized variance and the daily realized volatility in standard
deviation form present nonzero skewness and excess kurtosis'®. These descriptive statistics therefore
reveal a “fat tailed” leptokurtic distribution for the ECX CO; emissions futures contract of maturity

December 2008, except for the daily realized volatility in logarithmic form.

3.3 Optimal sampling frequency and maturity effect

As is usual, we need to estimate the highest frequency at which the microstructure noise can be
neglected. To this purpose, we use volatility signature plots, where the realized volatility measure

described in equation (5) is computed and plotted at different sampling frequencies.
Insert Figure 8 about here

Figure 3 shows the volatility signature plot for the full (top) and November-December (bottom)
samples. As in ABDL (2001) and ABDE (2001), we use these volatility signature plots to estimate
the range of sampling frequencies where the volatility is strongly increasing, indicating the increasing

presence of microstructure noise.

For the full sample, it appears that the choice of 15-minute returns should allow to minimize the impact
of the microstructure noise, while ensuring for each day a sufficient number of observations. The use

of 15-minute returns for the ECX carbon tick data also appears as a conservative choice compared to

13Some articles (e.g. ABD (2007)) consider the series of the logarithm of the realized variance instead of the logarithm of
the standard deviation of the realized variance. This is of course equivalent up to a scalar.

14This aspect is left for further research.

15Note for a normally distributed random variable skewness is zero, and kurtosis is three.



5-minute returns usually chosen for FX markets. Of course, the use of volatility signature plot as a
simple graphical tool to determine the optimal frequency is questionable. To overcome this difficulty,
Awartani et al. (2009) propose a statistical test allowing to assess the incremental impact of the
microstructure noise between two possible frequencies. As such, a rolling version of their procedure
can be viewed as a statistically robust implementation of the volatility signature plot method in ABDL
(2001). Because our contribution remains more empirically-oriented, we choose to proceed with the

graphical method.

Looking at Figure 3 reveals different patterns between the full sample and the end-of-year sub-sample.
We observe that the level of volatility is slightly higher at the end of the year. This is a quite
standard effect on commodity futures markets, also known as the “Samuelson effect”. Samuelson
(1965) advocated in his seminal article that volatility is increasing near the maturity of futures contract

6 Thus, to verify the Samuelson hypothesis,

as a response to an increasing flow of information.
we should observe that the futures price volatility increases as the futures contract approaches its
expiration date. This characteristic of financial assets has been recently proven to be valid using
intraday data for a wide range of futures market, including agricultural futures (Duong and Kalev,

2008).

The inspection of the volatility signature plots for the last months of 2008 tends to confirm this
hypothesis. The effects of microstructure noise seem visually more important. More importantly, the
dispersion of the estimator is larger due to the low level of observations used to compute the realized
variance. For the November-December period, the realized volatility estimate can lie anywhere between
0.01 and 0.025 using a sampling frequency around 15 minutes. This variability is lower for the full
sample, which goes from 0.015 to 0.020 for the same sampling frequency. Nevertheless, in view of
the moderate effect that we observe at the end of the sample, we choose to keep a 15-minute interval

between two observations as being representative of the optimal frequency for the entire sample.

In the next section, we explain the empirical results obtained.

4 Unconditional distribution of futures returns and realized
volatility

In this section, we study the unconditional distribution of realized volatilities and returns for the
ECX December 2008 futures contract. We first focus on the unconditional distribution of our three
proxies for realized volatility. We then study the distributional properties of daily raw returns, RV-

standardized and GARCH-standardized-returns.

4.1 Distribution of realized variance and volatility

Insert Figure 4 about here

16See also Illueca and Lafuente (2006) for an application of the realized volatility measure to the investigation of the
expiration-day effect.
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We first plot unconditional distribution of realized variances and realized volatilities in the left and

middle panels of Figure 4. The distribution of these volatility measures appears strongly right-skewed.

Insert Table 2 about here

This is confirmed by normality test statistics in Table 2. The kurtosis of the series indicates fat tails

compared to a Gaussian distribution.

Insert Figure 5 about here

Quantile-Quantile (QQ) plots against normality in Figure 5 unambiguously reject normality for realized
variance and volatility. Next, we turn to the logarithmic transformation, which is common practice

since ABDL (2001), to near normality.

4.2 Distribution of the logarithmic transformation of volatility

We begin our analysis by using the logarithmic transformation as in most of the existing literature. The
kernel-based distributions plotted in the right panel of Figure 4 indicate a less skewed density than for
realized variance or its square root. Indeed, in view of the plotted distributions and quantile-quantile
plots in the right panel of Figure 5, it appears that the logarithmic transformation of the realized
volatility, while remaining left-skewed, does a better job in nearing normality. It should be noted that
our kernel-based distributions are only based on 240 trading days. This limited data availability may

explain the departure from normality, which is expected in small sample experiments.

To sum up, our analysis shows that the logarithmic transformation of the daily realized volatility
is closer to normality than other forms of volatility. This result is in line with previous literature
on the modeling of stochastic volatility (see ABDL (2001, 2003) among others), which has practical

applications in option pricing.

4.3 Alternative transformations

The logarithmic transformation is only one transformation among others. Alternative transformations
have been proposed to improve the normal approximation in small samples. Chen and Deo (2004)’s
transformation is based on a power transformation, from which the exponent is then estimated. Un-
fortunately, the exponent has to be estimated knowing the asymptotic variance of realized volatility,
which is not the case in practice. Gongalves and Meddahi (2008) thus coin this statistic as “infeasible”,
and rely on Edgeworth expansions to determine the optimal parameter 8 of the Box-Cox transforma-
tion to retain in order to eliminate the skewness. We tested various values of 3 to better take into
account the residual skewness in our series. We did not find better transformations compared to the

initial logarithmic transformation'”.

17The results of these tests are no reported here due to space constraints, but are available from the authors upon request.
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4.4 Distributional properties of returns and standardized returns

Let R; be the daily open-to-close continuously compounded return of the futures contract for day t¢.
Insert Figure 6 about here

Daily raw returns are plotted in Figure 6. As is common for financial time-series, returns exhibit

volatility clustering.
Insert Table 3 about here

Descriptive statistics of daily returns are provided in Table 3. We observe that the unconditional
distribution of returns is close to normality with a sample skewness of -0.047 and a sample kurtosis of

3.24, thus resulting in a Jarque-Bera statistic value of 0.69 corresponding to a p-value of 0.70.

Next, we compute the series of daily standardized returns. Following Clark’s (1973) seminal contri-
bution for cotton futures returns, the standardized returns should follow a normal distribution if the
process governing the realized volatility is log-normal and the process governing returns is normal.
According to Clark’s vocable, the volatility process is the “directing process”, and the distribution of
standardized returns is said to be “subordinated” to the distribution of returns. The resulting process
is thus a lognormal-normal mixture, so-called the “mizture-of-distribution hypothesis” (MDH) in the

literature'®.
Insert Figure 7 about here

For the ECX CO4 emissions 2008 futures data, it is obvious that standardized returns are not normally
distributed (see Figure 7). Table 3 indicates a sample skewness of 0.89 and a sample kurtosis of 8.84.
Gaussianity is clearly rejected at all confidence levels, and does not need further investigation. As
in Areal and Taylor (2002), the rejection of the MDH may be due to (i) the imperfect estimation of
the logarithmic volatility through the realized estimator!®, and (i) the extreme outlier occurring on
October 13, 2008, which strongly deforms our distribution. Another explanation for non-normality may
be found in Fleming and Paye (2005), who argue that microstructure noise biases kurtosis estimates for
standardized returns. The intuition behind this result is that microstructure noise is less likely to occur
for large absolute returns, because large absolute returns are often associated with larger volumes. As
such, the realized volatility is underestimated for large absolute return days, thus inflating the tails of
the standardized returns distribution. Because of the limited number of observations in the present
work, it appears difficult to verify this assumption. This would necessitate many large absolute return
days and a thorough analysis of the microstructure bias conditionally on the presence of a large

absolute return.

I8A very clear presentation of the MDH is given in Jondeau et al. (2007), sections 3.3 and 3.4. This hypothesis is
investigated for futures returns in Areal and Taylor (2002) and Martens and Luu (2003), among others.

9Note we did not introduce the possibility of jumps in our analysis through more robust estimators as bipower or tripower
estimators (see ABD (2007)). Indeed, the presence of jumps may distort the distribution of standardized returns. This
area is left for further research.
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The rejection of the MDH for the ECX COs emissions 2008 futures contract has strong implications
for derivatives pricing in these markets??. The jump-free diffusion process which is commonly assumed
for option pricing does not seem suitable for the CO4 emissions allowance market. There may be two
different explanations for that. First, the process may include jumps. Options would then be better
priced using jump-diffusion models. Second, the independence assumption between the Brownian
motion and the volatility process may be violated. This also has some consequences for the pricing of

derivatives, as more complex models need to be considered.

We also investigate graphically the presence of leverage, i.e. an increase in volatility following negative
returns. Such an asymmetry may have consequences in terms of volatility modeling, because a good

working knowledge of returns would help to model volatility.
Insert Figure 8 about here

By contrast, the absence of asymmetric effect seems apparent in Figure 8, which provides a scatterplot
of realized volatility in logarithmic form against lagged standardized returns. This conclusion has, of

course, to be taken with care in light of the limited number of daily observations in our study.

It is common in the financial literature to examine the parametric modeling of volatility through
GARCH or stochastic volatility (SV) models. More precisely, GARCH volatilities may be used to
standardize daily returns, and may be compared with realized volatility results. Following Benz and

Truck (2009), we specify the AR(1)-GARCH(1,1) model:

Ry = Bo+ PoRi—1+ € (7)

hy = o + ar€;_1 + aghy_y (8)

with R, the daily returns, and ¢, the error term in equation (7). Equations (7) and (8) are estimated
by Quasi Maximum Likelihood (QML) (Gourieroux et al. (1984)) using the BHHH algorithm (Berndt
et al. (1974)).

Insert Table 4 about here

Estimation results of the AR(1)-GARCH(1,1) model are presented in Table 4. Residual tests for the
chosen specification provide evidence that any autocorrelation in the residuals and squared residuals
has been removed?'. The distribution of GARCH-standardized returns is more normal than the
distribution of realized volatility-standardized returns (see Table 3 and Figure 7). This result is
unusual in the financial economics literature, as GARCH-standardized returns are generally more fat-

tailed than realized volatility-standardized returns. The natural leptokurticity of GARCH models is

20Furopean options with various strike prices have indeed been introduced in October 2006 on ECX (see Chevallier et al.
(2009)).

21To conserve space, the autocorrelation and partial autocorrelation functions of the residuals and squared residuals are
not reproduced here, and may be obtained upon request to the authors.
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generally argued to be insufficient to accommodate the empirical excess kurtosis of financial time-

series??.

Insert Figure 9 about here

Figure 9 plots the time series of the AR(1)-GARCH(1,1) model. We observe that GARCH estimates
are significantly smoother than realized estimates. In light of our empirical study, GARCH modeling
appears more suitable to reach normality once returns have been standardized. This result highlights

the critical role which may be played by jumps in the time-series of ECX COs emissions 2008 futures.

In the next section, we investigate the properties of the conditional distribution of futures returns and

realized volatility.

5 Modeling realized volatility dynamics

In this section, we are interested in modeling the conditional distribution of volatility. This investi-
gation has practical applications for forecasting purposes, and may also be of interest for traders who

need accurate volatility estimates for derivatives pricing.

We first investigate the autocovariance in the realized variance, the realized volatility, and the loga-

rithm of volatility series.
Insert Figure 10 about here

Figure 10 plots the autocorrelation function (ACF) and partial autocorrelation function (PACF) es-

timated for the naive estimator23.

We detect the presence of serial correlation for realized variance
and realized volatility at least with one lag. For the log-transformation of the volatility series, the
estimated autocorrelation does not appear to decay exponentially, but rather hyperbolically. This may

be an indication of the presence of an unit root.
Insert Table 5 about here

The test statistics provided in the first column of Table 5 indicate the rejection of the unit-root
hypothesis in all cases. In what follows, we focus on the existence of long memory in the data

generating process.

Because the tick-by-tick time-series of ECX COq emissions futures is very short to investigate the
presence of long memory, we consider two estimation procedures for the fractional integration coeffi-

cient, as in ABDL (2001) and Areal and Taylor (2002). First, let St be the variance of the sum of

22Log-likelihood based on fat-tailed distributions (generalized error distribution (GED), Student, etc.) is commonly used
to accommodate this high degree of kurtosis. We did not find however any improvement in our estimation by using a
similar approach.

23Similar plots were obtained for the two other estimators, and thus are not reported here to conserve space.
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T consecutive observations of, say, logarithm of the realized volatility log(Rth/ 2). For long memory

processes, the variances St follow a scaling law such that:

TN g, ¢ (9)

as T — oo with d > 0, and C is a constant?4.
Insert Figure 11 about here

Figure 11 plots the sample variances Sy of the partial sums of the realized logarithmic standard
deviations against the logarithm of the aggregation level for T'. The regression coefficient corresponds
to 2d + 1, and thus leads to an implicit value of the fractional integration coefficient reported in Table

5.

The second methodology to estimate this coefficient is the Geweke-Porter-Hudak’s (henceforth GPH,
1983) method (see Brockwell and Davis (1991) for a formal presentation, or Corsi (2009) for a discus-
sion). The GPH estimate is based on the regression of the logarithm of the periodogram estimate of

the spectral density against In(w) over a range of frequencies w with:

w2 f(w) — C (10)

as Tw — 0 and C a constant. Again, the estimates are comprised in the range of [0,0.5], which

indicates the presence of long memory.

In view of these strong indications of long memory in the log time-series, we choose to rely on Corsi’s
(2009) parsimonious HAR-RV model for at three main reasons. First, recall that our dataset contains
only 240 trading days. This is clearly too few for ARFIMA modeling, despite the presence of long
memory?®. Second, Pong et al. (2008) show that long memory may not be distinguished from short
memory below 250 trading days. Second, the HAR-RV model succeeds in reproducing the long memory
features of the time-series, while being easier to estimate particularly on a shorter time-horizon. Third,
the heterogeneous behavior assumed between economic agents may be justified by the fact that traders,
utilities and financial institutions operating on the EU ETS have different investment horizons. The
HAR-RV model is used in ABD (2007), Corsi et al. (2008), and Liu and Maheu (2009) among
others. The economic intuition behind this model is that different groups of investors have different
investment horizons, and consequently behave differently (see Miiller et al. (1997) for the presentation

of the HARCH original model relying on the Heterogeneous Hypothesis).

The original HAR-RV model by Corsi (2009) is formally a constrained AR(22) model, slightly different
from ABDL (2001) and Corsi et al. (2008)2¢. The HAR-RV model using daily, weekly and monthly

24In comparison, setting d = 0 is a feature of short memory.

25Note that ARFIMA estimation does not appear suitable alternatives for the one-year ECX emissions futures with
tick-by-tick data, since the estimation of formal long memory models would require several years of data.

26 ABDL (2001) formally use an AR(5). In this article, we adopt an intermediate specification by selecting a simplified
HAR-RV model with only a weekly component, thus leading to a constrained AR(5) specification. Note that our choice
is also econometrically motivated by the Q(20) test statistics reported in Table 3.
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realized-volatility components may be defined as follows:

VRV, = ag+ agy/RVie1 + ay(VRV )51 + am(VRV )i—00:4—1 + Uy (11)

or in logarithmic form:

log RV; = ap + aglog RV;_1 + ay(log RV )¢ —5:4—1 + c(log RV )i _22:4—1 + s (12)

Following ABD (2007), the HAR-RV model for forecasting with the horizon h may be defined in
general form by using the multiperiod realized variation (the sum of the corresponding one-period

measures):

RViiin = h HRVig1 + RVipo + ... + RViyp] (13)

and by definition, RV} ;41 = RV;4+1. The HAR-RV model proposed by Corsi (2009) is a specific case of
equation (13) for which A = 1, thereby assuming that traders have investment horizons corresponding

to one-day ahead, one-week ahead, and one-month ahead forecasts.

As demonstrated below, the ECX CO; emissions 2008 futures contract only requires a weekly compo-
nent, thus simplifying Corsi’s initial model. For each estimator and for RV, RVY/? and log(RV'/?),

we estimate the following specification:

RViivn = Bo+ BiRV: + B2 RV 5+ + ut (14)
Insert Table 6 about here
Insert Table 7 about here
Insert Table 8 about here

Estimates are reported in Tables 6 to 8. From Table 6, we may observe that the HAR-RV model
performs poorly in fitting the daily realized variance, as shown by the low R? from 0.0003 (regression
(9)) to 0.0109 (regression (1)). These results are in line with previous literature on realized volatility,
where the “raw” realized variance is difficult to model. The results displayed in Table 7 show the same
pattern for the daily realized volatility, where the values obtained for the R? range from 0.0653 (re-
gression (8)) to 0.1211 (regression (1)). This improvement from realized variance to realized volatility
is common in other empirical studies (see for instance ABDL (2001, 2003)). The best results are gener-
ally achieved using the logarithmic transformation. Table 9 shows indeed a dramatic improvement in
the results obtained. The R? values obtained for the daily realized volatility in logarithmic form range
from 0.2798 (regression (2)) to 0.3691 (regression (4)). These values are comparable to ABD (2007)
for FX markets and S&P 500 futures. We may conclude that the fit of the HAR-RV model for the
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log-series of the ECX COs emissions 2008 futures data is much better than the fit for realized variance
or realized volatility. The dramatic improvement in the fit of realized volatility models when using
the log-transformation is well documented in the literature (see ABDL (2001, 2003), ABD (2007),
and Corsi (2009) among others). A better in-sample fit leads to a better out-of-sample forecasting

accuracy.

In the next section, we provide a forecasting exercice using the HAR-RV model versus the GARCH

specification.

6 Forecasting

In this section, we use Mincer-Zarnowitz regression techniques, as in ABD (2003, 2005), to investigate
the forecasting power of our competing models?”. To compare the forecasting accuracy of the HAR-RV

model versus the GARCH model estimated in the previous section, we run the following regressions:

(Vig1) = bo + b1 (Veg1t, HAR—RV) + b2(Vep1jt,cARCH) + Uit1 (15)
(vir1)Y? = bo + bl(vt+1|t,HAR—RV)l/2 + bZ(vt—i-llt,GARCH)l/Q + U1 (16)
log(ve1)"? = bo + by 10g(“t+1|t,HARfRV)1/2 + bo 1Og<vt+1\t,GARCH)1/2 + Uy (17)

Due to the limited historical dataset for ECX CO2 emissions futures, we only consider one-step-ahead
forecasts?®. The HAR-RV model is estimated with a daily and a weekly component for the three

estimators.

Insert Figure 12 about here

The corresponding forecasts for the daily realized variance, the daily realized volatility, and the daily

realized volatility in logarithmic form versus actual observations are displayed in Figure 122,

If the forecasting properties of the HAR-RV model are satisfactory, the by coefficient should be equal
to zero, the by coefficient should be equal to one, and the introduction of an alternative model (here
a GARCH model) through the coefficient by should not increase significantly the R? of the regression.
Thus, we are especially interested in the stability of the by and b coefficients, as well as in the increase
of the R? between models. The by coefficient depends on the scaling of the different variables, and

thus is subject to a wide variability.

Insert Table 9 about here

27These are also known as “encompassing regressions”.

284.e. at each period t we use the data observed until t—1, and base our forecasts on the parameters of the model estimated
over the period [0,¢ — 1]. The first forecast is made using 100 observations, the second forecast 101 observations, and so
on.

29Note that contrary to Figure 2, we decided to keep in our forecasting exercise the outlier on October 13, 2008, possibly
due to the “credit crunch” effect as discussed in Section 3.2.
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The main results of our forecasting exercise are presented in Table 9. The model which provides
the best results is the logarithmic model. This result is not surprising, since the logarithmic model
estimates were characterized by the highest values for the R? in Table 8. Our results confirm the
robustness of the HAR-RV model. As predicted, we observe that the by coefficients are close to zero,
while the by coefficients are close to one in all regressions (RV;, RVt1/ 2, log(Rth/ %)). Besides, the
GARCH estimates do not seem to improve significantly the R? of the regressions, especially in the
case of RV;. For Rth/2 and log(Rth/z)7 we only observe a slight increase of the R?, but the GARCH
coefficient is only significant at the 10% level for the log-series. This property of GARCH models
is widely documented in previous literature. Indeed, GARCH forecasts track much better the broad
temporal movements in the volatilities for lower frequency variations, and their accuracy tends to

perform poorly at higher frequencies.

Accordingly, our forecasting results do not seem to indicate that the mixture of the HAR-RV and
GARCH models improves significantly the forecast accuracy of our estimates. For all regressions, the

by coefficients are lower than one, and the values of the R? do not seem significantly higher.

Overall, we demonstrate in this section the accuracy of the HAR-RV model, as well as the inaccuracy
of GARCH forecasts and their inability to adapt to high-frequency movements. As noted in ABDL
(2003)3°, this is due to the superiority of realized measures in estimation. As such, superior estimates

of present conditions translate into superior forecasts of the future3!.

7 Conclusion

This article constitutes the first attempt to use realized measures of volatility for a specific energy
commodity, namely the ECX CO5 emissions futures contract of maturity December 2008. We proceed
as is standard in the realized volatility literature to assess the distributional and dynamic properties
of realized volatility for this contract. Besides, this article constitutes one of the first attempts to

analyze the properties of CO4 prices in the EU ETS using high-frequency data.

Our main findings may be summarized as follows: (1) the unconditional distribution of daily returns
are near normal; (2) any attempt to standardize these returns using realized measures and to a lesser
extent GARCH estimates does not lead the distribution to Gaussianity; (3) we thereby strongly reject
the mizture-of-distribution-hypothesis developed by Clark (1973) and Tauchen and Pitts (1983); (4)
the dynamics of realized volatility is well captured using the HAR-RV model with a daily and a
weekly component, which outperforms significantly the GARCH specification; and (5) the predictive
accuracy of the HAR-RV model outperforms unambiguously other models of conditional volatility

based on daily data.

This work may be extended in several directions. First, the ECX CO5 emissions futures tick-by-tick

30“We have identified the quadratic variation and its empirical counterpart, the realized volatility, as the key objects of
interest for volatility measurement, and we consequently assess our various volatility forecasts relative to this measure.
It is perhaps not surprising that models built directly for the realized volatility produce forecasts superior to those obtained
from less direct methods, [...]” (ABDL, 2003, p. 613).

31Note the forecasts presented here only constitute a statistical metrics, and not an economic metrics such as the value of
COg allowances used for option pricing or portfolio management.
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data set considered here only covers one-year with about 240 trading days and 700 transactions per
day, thereby multiplying parameter and model uncertainties. These uncertainties could be reduced
using bootstrap methods as developed very recently in Gongalves and Meddahi (2009). These authors
mainly resort to the wild bootstrap method to increase the number of available intraday data each

day, without suffering from the so-called “microstructure-noise” bias.

Second, the inclusion of jumps within realized volatility measures appears necessary to fit the charac-
teristics of CO4 futures highlighted in previous literature. Daskalakis et al. (2009) use a jump-diffusion
model to approximate the random behavior of COs prices. Benz and Truck (2009) analyze the spot
price behavior with a Markov-switching model. Lin and Lin (2007) model COy prices as a result of
mean-reversion with varying trends, combined with state-dependent price jumps and volatility struc-

ture, and show that mean-reversion fares better in forecasting futures prices.

Third, the use of realized volatility for ECX CO; emissions futures contracts may be useful for option
pricing (see Stentoft (2008) for a first application to option stock markets) with a high-frequency
measure of volatility. This may be of great help on such an emerging commodity market, as on the

EU ETS any attempt to price derivatives is subject to strong uncertainties.

Fourth, the “maturity effect” encountered when selecting the sampling frequency here may be checked
on other markets for more robust conclusions, and statistical tests may be used to determine the
optimal sampling frequency. Indeed, if realized volatility is significantly different at different moments

in the life of a futures contract, hedge ratios should be modified accordingly.
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Figure 1: CO4 futures prices of maturities December 2005 through 2014 from April 22, 2005 to January
16, 2009
Source: ECX
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Figure 2: Daily realized variance (RV, left panel), daily realized volatility in standard deviation form
(Rth/ ? middle panel), and daily realized volatility in logarithmic form (log(Rth/ %), right panel) for
the three estimators (naive on the first row, Zhang et al. (2005) sub-sampling estimator on the second
row, and Bartlett kernel-based estimator on the third row).
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the naive estimator for realized variance.
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Figure 4: Centered kernel density estimates of the unconditional distribution for the daily realized
variance (RV;, left panel), the daily realized volatility in standard deviation form (Rth/ 2, middle
panel), and the daily realized volatility in logarithmic form (log(RV}l/ 2), right panel) based on 15-
minute returns. The first row is for the naive estimator, the second row is for the Zhang et al. (2005)
sub-sampling estimator, and the third row is for the Bartlett kernel-based estimator.
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Figure 5: QQ plots for the realized variance (left panel), realized standard deviation (middle panel)
and log of the standard deviation (right panel) for the three estimators (naive on the first row, Zhang
et al. (2005) sub-sampling estimator on the second row, and Bartlett kernel-based estimator on the

third row).
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Figure 7: Smoothed Gaussian kernel distribution of daily returns (left panel), realized volatility (naive
estimator) standardized returns (middle panel) and GARCH standardized returns (right panel).



%o

o
4
o4
-
[N
w

Figure 8: Scatterplot of the logarithmic realized volatility against lagged standardized returns.
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Figure 10: Autocorrelation and partial autocorrelation functions of the daily realized variance (RV,
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Figure 11: Scaling plot of the sample variances St of the partial sums of the realized logarithmic
standard deviations against the logarithm of the aggregation level.
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Figure 12: Forecasting of the daily realized variance (RV;, left panel), the daily realized volatility in
standard deviation form (Rth/ 2, middle panel), and the daily realized volatility in logarithmic form

(log(Rth/ %), right panel) with the HAR-RV model for the three estimators (naive on the first row,
Zhang et al. (2005) sub-sampling estimator on the second row, and Bartlett kernel-based estimator
on the third row).
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Lilliefors ~ Cramer-  Jarque- Watson Anderson-
Von Bera Darling
Mises
Naive estimator
RV1/2 0.127955  1.350926  1080.817 1.089644  8.055166
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
log(RV1/2) 0.062920  0.205757  22.16161  0.164762  1.347298
(0.0522) (0.0045) (0.000015) (0.0095) (0.0017)
Zhang et al. (2005) subsampling estimator
RV1/2 0.128204 1.047318  4607.472  0.870926  9.000989
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
log(RVl/Q) 0.079671  0.353115  34.84085 0.286651  2.259627
(0.0036) (0.0001) (0.0000) (0.0002) (0.0000)
Bartlett kernel-based estimator
RV1/2 0.120181  1.171580  8198.267 0.994852  9.903061
(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
log(RVl/Q) 0.075590  0.264016  25.42408 0.219758  1.671065
(0.0013) (0.0009) (0.0000) (0.0016) (0.0003)

Table 2: Normality test statistics for the realized standard deviation and logarithmic

transformation with the three estimators.

Note: The values reported in parentheses are the p-values.



Mean SD Skewness Kurtosis Jarque- Q(20) Q2%(20)
Bera

Daily returns R~ 0.0000337 0.029600 -0.047258 3.242590 0.691953 75.609 51.660
RV- 0.001904 0.498409 0.893659 8.846009 381.4887 66.923 152.95
standardized
daily returns
GARCH- 0.3078 46.3145 0.1034 3.4476 2.4622 72.154 19.500
standardized

daily returns

Table 3: Descriptive statistics of continuously compounded daily returns, realized
volatility (naive estimator) standardized returns, and GARCH standardized daily re-

turns.

Note: The number of trading days is 240. SD stands for standard deviation, Q(20) and Q2(20)

stand for the Ljung-Box @ test statistics and the Ljung-Box Q?(20) test statistic computed up to 20

lags for returns and squared returns, respectively.



Daily returns

Mean equation

Bo 0.000045
(0.0015)
51 -0.3881***
(0.0677)
Variance equation
Qg 0.0000945
(0.0000668)
ay 0.1839**
(0.0945)
Qo 0.6973%**
(0.1572)
R? 0.1300
Adj. R? 0.1155

Table 4: AR(1)-GARCH(1,1) model estimates for daily returns

Note: The dependent variable is the daily return. Robust standard errors in
parenthesis. *** indicates significance at 1%, ** at 5% and * at 10% levels.



ADF test d(GPH) d from regression

Naive estimator

RV, -13.9122 0.4376 -
RV;'/? -11.1715 0.3318 -
log(RV,"'?) -4.2934 0.6849 0.4634
Zhang et al. (2005) subsampling estimator

RV, -14.6932 0.4399 -
RV;}'/? ~11.3561 0.3247 -
log(RV,"'?) -4.4725 0.6964 0.4588
Bartlett kernel-based estimator

RV, -15.0757 0.4306 -
RV;}/? ~11.8635 0.3066 -
log(RV,"'?) -3.7696 0.6520 0.4711

Table 5: ADF test statistics up to 14 lags, d(GPH) Geweke-Porter-Hudak estimates
of the fractional integration parameter, and d coefficients estimated from regressions
for the daily realized variance (RV;), the daily realized volatility in standard deviation
form (Rth/ %), and the daily realized volatility in logarithmic form (log(Rth/ %)) with

the naive, subsampling and kernel-based estimators.
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bo by ba R?

Daily realized variance (RV})

HAR-RV 0.006327  0.5678 0.0011
(0.02075)  (1.3777)

GARCH daily 0.01301 1970.17 0.0028
(0.00434) (3120.91)

HAR-RV + 0.00699 0.4156 1788.50 0.0033

GARCH daily (0.0208)  (1.4074)  (3190.7)

Daily realized volatility in standard devi-

ation form (Rth/2)

HAR-RV -0.00654  1.0408%** 0.1139
(0.0240)  (0.2419)

GARCH daily 0.05527 45.8000*** 0.0703
(0.0130) (13.879)

HAR-RV + -0.0069 0.8526***  23.403 0.1281

GARCH daily (0.0238)  (0.2735)  (15.322)

Daily realized volatility in logarithmic

form (log(RV;'/?))

HAR-RV 0.1479 1.0656%** 0.4704
(0.2517)  (0.0942)

GARCH daily 2.3640%** 0.6945%** 0.1917
(0.8599) (0.1188)

HAR-RV +  1.2419* 0.9724**%*  (.1854* 0.4800

GARCH daily (0.7032)  (0.1090)  (0.1113)

Table 9: Estimates of the Mincer-Zarnowitz regression (equations 15 to 17) using
forecasts for the daily realized variance, the daily realized volatility, and the daily
realized volatility in logarithmic form obtained from the naive estimator.

Note: The values reported in parentheses are robust standard errors.



