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Exe
utive SummaryThe obje
tive of this resear
h proje
t is to study systemi
 risk in energy derivatives mar-kets. Con
erns about systemi
 risk have re
ently grown in �nan
ial markets, notably inenergy markets. The latter be
ome more and more integrated, both as regards ea
h otherand as regards other markets. For some years now, pri
e in
reases in energy 
ommoditieshave often been invoked to explain that of soft 
ommodities like 
orn, wheat, rape orsugar 
ane. Moreover, sin
e 
ommodities are 
onsidered as a new 
lass of assets, they areintensively used by portfolio managers for diversi�
ation purposes. Consequently, partof the pri
e movements re
ently re
orded on 
ommodity markets might be explained byexternal events like the �u
tuations re
orded in sto
k pri
es or dollar ex
hange rates.The �nan
ial literature has investigated the question of systemi
 risks on 
ommodity mar-kets in di�erent ways: herding behavior, 
o-integration te
hniques, spatial and temporalintegration, et
. These studies of the way sho
ks appear in �nan
ial markets, and theway they disseminate among other markets generally take into a

ount one or two of thedimensions of integration, whi
h 
an be examined a

ording to three di�erent points ofview: spa
e, observation time, and maturity. The analysis of the relationships linking dif-ferent markets, for a single 
ommodity being simultaneously negotiated in several pla
es,has to do with the spatial dimension of integration. When the fo
us is pla
ed on how therelationships between several 
ommodities evolve over time, it is the temporal dimensionof integration whi
h is examined. Lastly, it is possible to 
onsider a third dimension,related to the term stru
ture of 
ommodity pri
es, i.e. the relationships linking, at aspe
i�
 date, several futures 
ontra
ts with di�erent maturities.So, while it is highly likely that integration and systemati
 risk are progressing in energyderivatives markets, the previous studies always gave preferen
e to one or two dimensionsof the integration. Su
h a 
on
lusion naturally leads to the following question: �why nottry to study the three simultaneously?� Part of the answer lies probably in the fa
t thatits is not that easy. Taking into a

ount simultaneously the three dimensions of integra-tion implies the possibility of, �rstly being able to 
olle
t a huge amount of data, se
ondlybeing able to analyze the data, and thirdly taking into a

ount the possible 
omplexityof the system des
ribed by the data.This report presents the results of our investigations on that subje
t, one year after wev



Exe
utive Summarystarted our resear
h. It 
ontains seven 
hapters. The �rst 
hapter is dedi
ated to a generalintrodu
tion, the presentation of our main obje
tives and the s
ienti�
 relevan
e of ourproje
t, �rst for the Fren
h Energy Coun
il, se
ond from an a
ademi
 point of view. Theaim of the se
ond 
hapter is the presentation of the database and its main 
hara
teristi
s.In the third 
hapter we provide the methodology and tools used to measure the integrationof the markets. In the fourth 
hapter we expose the results of the empiri
al analysis of theenergy markets. In the �fth 
hapter we provide for a systemi
 approa
h for all marketsin the spatial, maturity and three dimensions. In the sixth 
hapter we present a shortreview of the so-
alled Ising model whi
h is a major model of 
olle
tive behavior. Thesepages are taken as an opportunity to expose important features of statisti
al physi
s aswell as the 
on
ept of the minimal model. We then present our 
on
lusions and explainthe poli
y impli
ations of our study.In the �rst 
hapter of this report, we underline the obje
tive of our resear
h proje
t,whi
h is the three-D investigation of systemi
 risk in energy derivative markets. This re-sear
h aims at enhan
ing the understanding of market me
hanisms. To do so, we intendto transfer te
hni
al skills from physi
s to e
onomi
s in order to extra
t relevant informa-tion from the three dimensional spa
e (time, spa
e and maturity). We then explain whysystemi
 risk seems an interesting investigation �eld for statisti
al physi
s. Systemi
 risk
an be brie�y de�ned as the sudden manifestation of a dysfun
tion o

urring on a larges
ale and resulting from a strong integration of the markets. At a mi
ros
opi
 s
ale, theintera
tions between the individual a
tors operating in su
h a market draw a 
omplexnetwork whi
h is partly responsible for the integration and may lead to non predi
tablemovements spreading throughout a whole e
onomi
 se
tor. In other words, su
h a net-work might give rise to the emergen
e of a global self organized behavior resulting fromlo
al intera
tions. Su
h a phenomenon appears in physi
s when a system 
hanges fromone state to another one, for example when water (liquid phase) turns into i
e (solidphase). A

ording to the authors of this report, su
h an analogy between �nan
e andphysi
s has a high potential, be
ause physi
ists developed many theoreti
al or numeri
altools allowing them to investigate the behavior of 
omplex systems.We also found it important to underline the relevan
e of su
h a subje
t for an organiza-tion like the Fren
h Energy Coun
il. This point was underlined at the beginning of thisexe
utive summary, through the presentation of the obje
tives of this report. So let usjust underline here that it is 
ru
ial, today, to know how strongly, in the spatial as well asin the maturity dimension, energeti
 markets are self-integrated or integrated with otherderivatives markets, and whether or not they 
ould be a�e
ted by systemi
 risk. If it werethe 
ase, this risk would need to be 
hara
terized and quanti�ed.Finally, we give our point of view on the s
ienti�
 and a
ademi
 pertinen
e of the proje
t.From an a
ademi
 point of view, the aim of this proje
t is to 
onne
t two di�erent �eldsof investigation: �nan
e and physi
s. For twenty years, the e
onomy was of interest to anin
reasing number of physi
ists. More pre
isely, minimal models, that is to say, modelsvi



relying on very simple assumptions, have re
ently o�ered fruitful insights into the un-derstanding of the role of simple me
hanisms in the emergen
e of 
omplex patterns orinformation transfers. Thus we hope that, as was the 
ase for biology, dynami
al systemsand also e
onomy, we will be able to 
onstru
t a new model 
apturing the main features of
o-movements in 
ommodity derivative markets. Before rea
hing su
h a long-term obje
-tive, we needed to explore the empiri
al relationships linking energy derivative markets.This is the aim of this report.Over the past year, we �rst realized an important e�ort with the data. Extra
ting thedata and analyzing the database represented a huge amount of work and time. Dur-ing this period, we 
olle
ted nearly two million daily data and analyzed more than sixhundred �fty thousand pri
es. In the se
ond 
hapter, �rstly we present the markets se-le
ted for the empiri
al study, namely energy, agri
ulture and �nan
ial assets. On thebasis of the Futures Industry Asso
iation's monthly volume reports, we retained those
ontra
ts 
hara
terized by the largest transa
tion volumes. The 
hoi
e of these threese
tors is motivated by re
ent observations of 
hanges in �nan
ial markets. Commoditiesderivatives are more and more integrated: within the se
tor of 
ommodities and also withother markets. Furthermore, 
ommodities are 
onsidered as full �edged assets used fordiversi�
ation purposes by portfolio managers. Consequently, pri
e in
reases in the given
ommodities has in part been asso
iated with pri
e �u
tuations of energy 
ommodities or
ould be explained by a priori foreign events like the drop in equities or ex
hange rates.On these markets, we 
olle
ted settlement futures pri
es as well as opening pri
es, trans-a
tions volumes and open interest. We however only used futures pri
es for this part ofthe resear
h. We leave the information provided by transa
tion volumes and open interestfor further investigations, as well as, if ne
essary, the extension of the database. Thenwe expose the main 
hara
teristi
s of our database and present a brief overview of thebehavior of futures pri
es over our study period. Finally, we propose a dis
ussion on theseasonal behavior of the 
ommodities under examination. We tried to identify a seasonalpattern in the futures pri
es of petroleum produ
ts, through - among others - the Dis
reteFourier Transform method. However, so far, the results have not proved 
onvin
ing.In the third 
hapter, we suggest a method whi
h enables us to measure the integra-tion of the markets empiri
ally. Among the di�erent tools available in physi
s, one seemsnaturally relevant to study the three dimensional integration of derivative markets: thegraph theory. A graph is a mathemati
al representation of pair wise relations within a
olle
tion of dis
rete entities. A �nan
ial market is 
omposed of a large number of assets,su
h as equities, bonds or derivative produ
ts, whi
h are linked together with di�erentintensities. Thus a representation of the �nan
ial markets through the prism of graphs
ould be interesting, as e
onomi
 information will emerge from the topology of the graphs.Among the di�erent graphs available, we 
hose to use the minimum spanning tree be
auseof its uniqueness and simpli
ity. The latter indeed provides the shortest path linking thevii



Exe
utive Summarynodes of the graph to ea
h other. Thus, it reveals the geometri
 aspe
ts of 
orrelationsbetween the di�erent entities under examination. As the markets are intrinsi
ally timedependant, it is ne
essary to study the dynami
al properties of both the 
orrelations andthe minimum spanning trees. We examine the time dependant properties of the 
orrela-tions, as well as the markets' strength, whi
h gives information on how mu
h a market is
orrelated to the others. A further 
hara
terization is obtained by quantifying the degreeof randomness of the minimum spanning trees. The former information is given by theso-
alled allometri
 exponent, whi
h indi
ates what kind of path a sho
k 
an follow tospread through to other markets. We also study the robustness of the tree topology inrespe
t of market events using the survival ratio. This gives the fra
tion of survival linksand shows the importan
e of rearrangements between two 
onse
utive minimum spanningtrees.In the fourth 
hapter, we apply this method to our data and 
arry out empiri
al testsin the energy markets. The maturity dimension is explored for two markets: Ameri
an
rude oil and heating oil. Before pro
eeding with these tests, we assumed that they wouldre�e
t the presen
e of the Samuelson e�e
t on the data. In an ideal 
ase, the graph rep-resenting the maturities would be perfe
tly organized, ranging regularly from the �rstto the last delivery date. In other words, the topology of the minimum spanning treeswould be linear. We were nevertheless surprised to observe our results on heating oil.The maturities between one and 36 months are perfe
tly ordered. As far as 
rude oil is
on
erned, the results are less perfe
t, but still very interesting. We suppose that whatwe observe on 
rude oil is partially the results of the maturation pro
ess of the marketover time, but we intend to make further investigations on this market before 
omingto a more de�nite 
on
lusion. As far as spatial integration is 
on
erned, the results arealso very interesting. In order to give greater insight on the empiri
al relationships link-ing �ve markets, we 
arried out several series of tests, on di�erent maturities: one, two,three, six and twelve months. It so happens that the topologies of the graph 
hange withthe maturity under 
onsideration: they are the same for the one, two and three months'maturities, but not for the six and twelve months' maturities. In ea
h 
ase however, thelinks between markets, via the representation of the minimum spanning trees, have ane
onomi
al interpretation that satis�es intuition. We interpret this result as a positivetest for the relevan
e of our method and its appli
ation to derivative markets. Comparingthe results obtained with the di�erent maturities, we found that the strength of the inte-gration in
reases with the maturity. The latter result is original and has not as yet beenmentioned in other studies. In parti
ular, the authors of [19℄ identi�ed the spatial linksbetween oil markets but omitted the information provided by the maturity dimension.The �fth 
hapter provides a systemi
 analysis of all markets sele
ted for the study andperforms empiri
al tests in the spatial dimension, maturity dimension as well as on thethree dimensions. To the best of our knowledge the maturity dimension and the threeviii
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Figure 1: MST for the three-dimensional analysis, 06/27/2000-08/12/2009. The di�erentfutures 
ontra
ts are represented by the following symbols: empty 
ir
le: IED, point:ISM, o
tagon: LNG, ellipse: LLE, box: NNG, hexagon: LLC, triangle: NCL, house:NHO, diamond: NGC, inverted triangle: CBO, triple o
tagon: CEU, double 
ir
le: CS,double o
tagon: CW, egg: CC. For a given futures 
ontra
t, all maturities are representedwith the same symbol. The distan
e between the nodes is set to unity. ix



Exe
utive Summarydimensions have not been studied previously.The �rst part of the study is devoted to the visualization of the MST of the three se
-tors simultaneously. The visualization of the MST �rstly gives eviden
e of a star-likeorganization of the trees in the spatial dimension, whereas the maturity dimension is
hara
terized by 
hain-like trees. These two topologies merge in the three-dimensionalanalysis. A typi
al three-dimensional MST is presented in Figure 5.2. In order to helpthe visualization of the tree all maturities are given with the same symbol and distan
ebetween the nodes is set to unity. The star-like organization that appears on this Figurereprodu
es the three di�erent se
tors under examination: energy, agri
ulture and �nan
e.We emphasize that the linear shape of the trees observed in the energy sub-group is alsovalid for the agri
ulture as the �nan
ial se
tors.Ameri
an and European 
rude oils simultaneously o

upy the 
enter of the graph andensure the links with agri
ultural produ
ts and �nan
ial assets. Thus our �rst important
on
lusion is that 
rude oil is the best 
andidate for transmitting pri
es sho
ks. If su
h asho
k appears at the periphery of the graph, unless it is absorbed qui
kly, it will ne
es-sarily pass through 
rude oil before spreading to the other energy produ
ts and se
tors.Moreover, a sho
k will have an impa
t on the whole system that will be all the greaterthe 
loser it is to the heart of the system.In the third se
tion of the 
hapter we explore the dynami
al properties of the sys- tem.We have seen that the level of integration is greater in the maturity dimension than inthe spatial one. This result re�e
ts the fa
t that arbitrage operations are far easier withstandardized futures 
ontra
ts written on the same underlying asset than with produ
tsof di�erent natures. The analysis of how this level evolves over time shows that integra-tion in
reases signi�
antly on both the spatial and maturity dimensions. Su
h an in
rease
an be observed on the whole pri
es system. It is even more evident in the energy se
tor(with the ex
eption of the Ameri
an and European natural gas markets) as well as in theagri
ultural se
tor. The latter is highly integrated in the end of our period. Lastly, asfar as the �nan
ial se
tor is 
on
erned, no remarkable trend 
an be highlighted. Thus,as time goes on, the heart of the pri
e system be
omes stronger whereas the peripheralassets do not 
hange pla
e signi�
antly.The sixth 
hapter of this report is devoted to a theoreti
al study fo
using on the waywe 
ould build a minimal model. This 
hapter should naturally be read as an initialattempt to think about su
h a model rather than to build it.We suggest the use of re
ent methods originated from statisti
al physi
s, hoping that thetools and ideas previously developed for 
omplex systems will also be relevant for �nan
ialmarkets. If we indeed reformulate from a physi
ists point of view the question of systemi
risks and the spreading of sho
ks among markets, the following question arises: �How
an global 
olle
tive behavior o

ur from lo
al inter- a
tions?�. We have the intuitionthat 
on
epts originated from the physi
s of phase transition and 
riti
al phenomena,su
h as 
olle
tive behavior, s
ale invarian
e and renormalization may be useful to 
on-x



sider that question theoreti
ally. Even if �nan
ial markets are not ruled by natural laws,they 
annot es
ape the fas
inating ubiquity of 
olle
tive motion. Like statisti
al physi
s,e
onomi
s aims to des
ribe the equilibrium and dynami
s of a large number of entities,su
h as e
onomi
 agents, whi
h intera
t with ea
h other. In both 
ases these intera
tionslead to sudden 
olle
tive phenomena.We �rst point out the spirit of a minimal model. Su
h a model indeed results from a
hoi
e to be made between two 
ontradi
tory obje
tives: �rst, the formulation of equa-tions whi
h remain simply enough and se
ondly the need to 
apture all the main featuresof the phenomena under examination.We then present what a physi
ist means by the 
on
ept of 
olle
tive behavior and whatkind of tools or measures exist in order to represent and to dete
t su
h behavior. Theseminal model on that subje
t is the so-
alled �Ising model�, whi
h des
ribes the sponta-neous magnetization in a magneti
 material. A magneti
 �eld results from the 
olle
tivebehavior of mi
ros
opi
 entities. On a mi
ros
opi
 s
ale, ea
h ele
tron 
arries a physi
alquantity, the spin. The latter is more or less the same for all ele
trons and 
reates ama
ros
opi
 magnetization. The Ising model allows the intera
tions between the spinsto be determined. We �rstly present it in a one dimensional spa
e. Naturally, higher di-mensions are needed. Unfortunately, to deal with a high dimensional system - or a more
ompli
ated model - some approximations are ne
essary. A very important and usefulapproximation method is the mean-�eld approximation. The mean �eld method repla
es,within a population, the in�uen
e that an individual's neighbors might have on that spe-
i�
 individual, by their average impa
t. This 
hapter of the report must be 
onsideredas the re�e
tion of our state of advan
ement so far. Indeed, the 
ore of our next proje
tis the development of su
h a model inspired by statisti
al physi
s.At the end of this report, we intend to 
arry on our investigations in the following di-re
tions: We will �rst expand our empiri
al analysis in the maturity dimension. Weobserved some regular and re
urrent 
orrelation patterns in the maturity dimension thatneed deeper investigation and might re�e
t some universal me
hanisms of pri
e's 
urvesegmentation. The latter result would be of interest to both the �nan
ial and physi
s
ommunities, whilst up until now the literature has greatly omitted this important fea-ture.We also aim to enri
h our results with an analysis of the transa
tion volumes and theopen interests. Firstly we 
ould use the same graph theory formalism in order to analyzetrees of 
orrelated transa
tions and open interests. We 
ould then try to 
onsider returns�u
tuations weighted by volumes and/or open interests. Thus, su
h questions as the ro-bustness of the 
entrality of 
rude oil with respe
t to interest rates will be addressed.Another �eld of empiri
al investigation will be the study of sho
ks a�e
ting the markets.In parti
ular we 
ould determine the topologi
al properties of trees during strong events,as the nature of the a�e
ted links or the time required to go ba
k to initial 
on�guration.The main part of our further studies will however be devoted to modeling the 
olle
-xi



Exe
utive Summarytive behavior of derivatives energy markets and systemi
 risk. We aim to use theoreti
al
on
epts inspired by statisti
al physi
s, espe
ially the use of the minimum model. Ourformer results will lead us to establish fundamental hypotheses and will a
t as a guidelinein developing the model. In parti
ular we want to determine, within a single framework,the me
hanisms of pri
e's term stru
ture (whi
h lead to linear tree), as the intera
tionsbetween markets (whi
h lead to star-like tree). On
e the two typi
al shapes have beena
hieved, we will be able to use the model in order to understand the 
omplex pro
ess ofbran
hing that appeared while the three dimensions of integration, namely where, in theirpri
e's 
urves, two di�erent derivatives markets are most 
orrelated. A major 
ontributionof this part of the modeling will be to understand how (and where) links appear betweenmarkets. Se
ondly, we will pro
eed to a sho
k analysis and 
onsider su
h questions asthe existen
e of the tree's shape that en
ourage or prevent strong sho
ks, the requirednumber of markets involved in an event to propagate it, or the amplitude of sho
ks that
an involved in systemi
 risk.
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1
Issues of this resear
h proje
t

Contents1.1 Obje
tives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11.2 Interest of statisti
al physi
s for the question of systemi
 risk 21.3 S
ienti�
 relevan
e of the proje
t for the Fren
h EnergyCoun
il . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41.4 A
ademi
 relevan
e of this resear
h proje
t . . . . . . . . . . . 5In this 
hapter we present the obje
tive of our proje
t, that is to say the three di-mensional investigation on systemi
 risk in energy derivative markets. Then, we exposea physi
ist point of view of systemi
 risk and explain why the latter seems an interestinginvestigation �eld for statisti
al physi
s. Finally, we give our point of view on the s
ienti�
and a
ademi
 pertinen
e of the proje
t.1.1 Obje
tivesThe obje
tive of this resear
h proje
t is a statisti
al physi
s approa
h of systemi
 risko

urring in 
ommodities derivative markets. In a usual framework, the study of sho
k1



Chapter 1. Issues of this resear
h proje
tpri
es arising in a market and propagating in one or more markets is usually 
onsidereda

ording three di�erent dimensions. There is one spatial dimension and two temporal.The spatial aspe
t deals with 
ommodities traded simultaneously in di�erent geograph-i
al pla
es. As we are working with future 
ontra
ts, we need to 
onsider two temporaldimensions. The �rst one is the pri
es 
hanging over time and the se
ond one is the pri
esterm stru
ture, ie how pri
es 
hange with maturity.The re
ent works in the area of energy 
ommodities show a higher and higher marketintegration, involving a most probable systemi
 risk. Until now, most of the e
onomi
aland �nan
ial investigations fo
us on one of the integration [14, 4℄ at the expense of aglobal vision of the three dimensions.In the last de
ade physi
ists paid a lot of attention to e
onomi
s. They used a wide spe
-trum of methods, models and tools of modern physi
s as non-linear physi
s [13℄, sto
hasti
pro
ess [3℄, 
riti
al phenomena or networks [18, 31, 2℄. Due to the large quantities of dataavailable on 
ommodities, we will 
onsider the problem of systemi
 risk within the frame-work of statisti
al physi
s and 
omplex systems. This innovative approa
h will need toresort to a novel vision of markets me
hanisms. Di�erent te
hni
al skills will be trans-ferred from physi
s to e
onomi
s in order to extra
t relevant informations from the threedimensional spa
e (spa
e, time and maturity).1.2 Interest of statisti
al physi
s for the question of sys-temi
 riskConsidering that previous works fo
us only on one or two dimensions of integration, wewill 
hallenge to 
onsider from a global point of view the propagation of systemi
 risk.Physi
s extends its knowledge to a wide variety of subje
ts far from the laboratories. Anexhaustive list of the appli
ations of physi
al models applied far from 
lassi
al physi
sarea is not in the s
ope of this report. As examples, �re forests are studied with per
ola-2



1.2. Interest of statisti
al physi
s for the question of systemi
 risktion methods [9℄, tra�
 �ows are understood in terms of hydrodynami
al and sho
k waveequations, elasti
 properties of biologi
al membranes or blood 
ells are well des
ribed bystatisti
al �elds theory [7, 10℄, birds �o
ks 
an be des
ribed with simple models and sta-tisti
al physi
s [26℄.A key question is: Why is there an interest in using statisti
al physi
s to approa
h thequestion of systemi
 risk?. Systemi
 risk is the sudden manifestation of a dysfun
tiono

urring at large, eventually global, s
ale due to a strong markets integration. At a mi-
ros
opi
 s
ale, the intera
tions between agents make up a 
omplex network responsiblein part of the strong integration and may lead to non predi
table drawup (drawdown)spreading over a whole e
onomi
 se
tor. In other words, one 
an assists to the emergen
eof global 
ooperative behavior, self organized, resulting from lo
al intera
tions.This kind of behaviors appear in phase transitions when a system 
hanges from one toanother state of matter, like the water (liquid phase) turns to i
e (solid phase) or vapor(gaseous phase) as the temperature of the environment is tuned, or when a material dis-plays suddenly a spontaneous magnetization. As one 
an observe large 
olle
tive behaviorin �nan
ial markets, the analogy with 
riti
al phenomena appears to be a �eld of inves-tigations with a very high potential, be
ause statisti
al physi
ists have many theoreti
alor numeri
al tools, to investigate the behavior of 
omplex systems and understand theme
hanisms at stake.If there is an interest for e
onomists in the results of statisti
al physi
s, �nan
e appearto be a very 
hallenging and fas
inating �eld of investigation for physi
ists. Derivativemarkets, and �nan
ial markets in general, are open systems, it means that there are somequantities as money, number of agents or volume of 
ontra
ts that 
hange in time. Thesekind of systems are often 
alled non-equilibrium systems and are at the top of the re
entinvestigations in statisti
al physi
s. Pri
es are not pure un
orrelated random pro
esses,they are not normally distributed and at 
ontrary and fat tails and power law distribution.In 
on
lusion, there are 
ommon interests between e
onomy and physi
s that merge in3



Chapter 1. Issues of this resear
h proje
tstudying and understanding through the s
ope of the s
ien
e of 
omplex systems.
1.3 S
ienti�
 relevan
e of the proje
t for the Fren
hEnergy Coun
ilThe last evolutions observed on �nan
ial markets raise fears about the asso
iated systemi
risk. Commodities derivative markets are more and more integrated: within the se
tor of
ommodities and also with other markets. Indeed, the pri
e in
rease of given 
ommodities(
orn, rapeseed, wheat, sugar 
ane) has been in part asso
iated to the 
hange of energeti

ommodities pri
es. Furthermore, 
ommodities are 
onsidered as full �edged assets used ina diversi�
ation purpose by portfolio managers. Consequently, pri
e movements re
ordedon some 
ommodities markets 
ould be explained by a priori foreign events like thede
rease of equities or ex
hange rates. Then, the aggressive behavior of spe
ulators isinvoked to explain some pri
e behavior and 
ould be at the origin of sho
ks rising fromthe merging of markets and propagating to the physi
al market.It is 
ru
ial to know if energeti
 markets 
an be a�e
ted by systemi
 risk and, in su
h
ase, be able to quantify this risk and its 
hara
teristi
s. It is undoubtedly interestingto fo
us on systemati
 risk. If it turns out that a signi�
ant part of pri
e �u
tuations is
aused by noise, the e�
ien
y of hedging strategies on derivative markets is likely to bea�e
ted. Moreover, from the point of view of regulation, it is important to 
onsider thequality of the servi
es o�ered by derivative markets, and to ask how e�e
tive they are intransferring risk among operators and in providing, through futures pri
es, informativesignals.4



1.4. A
ademi
 relevan
e of this resear
h proje
t

Figure 1.1: Left �gure: real starling �o
k. Right �gure: three-dimensional numeri
al�o
k [26℄. Natural 
omplex pattern and typi
al density �u
tuations 
an be observed in aminimal model of intera
ting agents.1.4 A
ademi
 relevan
e of this resear
h proje
tFrom an a
ademi
 point of view, the aim of our proje
t is to 
onne
t two di�erent �eldsof investigation: �nan
e and physi
s.Sin
e twenty years, e
onomy raised the interest of an in
reasing number of physi
ists.From the pioneer works based on me
hani
al equilibrium approa
h to re
ent works onrandom matrix theory. Su
h an interest in �nan
ial markets 
an be explained by the fa
tthat the events, on �nan
ial markets, result from the intera
tions of heterogenous agentsin a non equilibrium environment.Systemi
 risk 
an lead to important defaults due to markets integration. Considering thissituation from a physi
ist point of view, one 
an address the question of systemi
 in thefollowing way: How a 
an global 
olle
tive 
onsensus 
an emerge from lo
al intera
tions,
orrelations or de
isions? Con
epts from the phase transitions and 
riti
al phenomena,but also from 
haos or non-linear physi
s, 
an be very helpful to answer questions aboutsystemi
 risks.Re
ently, Chaté and his 
o-workers developed sto
hasti
 algorithms aiming at 
hara
ter-izing the nature and the properties of a spontaneous ma
ros
opi
 motion raising in an5



Chapter 1. Issues of this resear
h proje
tassembly of identi
al agents intera
ting lo
ally [5, 12℄. Despite their minimality, thesemodels with a redu
e number of parameters are full of informations about the motion ofba
teria or 
omplex patterns arising in liquid 
rystal [6℄. Furthermore, still in the spirit ofminimal models done by Chaté and 
oworkers, a slightly modi�ed model of 
olle
tive mo-tion has been su

essfully applied into the des
ription of starlings �o
ks, that are knownto display a very high degree of 
omplexity (�gure 1.1) [26℄.If these minimal models are fruitful to understand the role of simple me
hanisms in theemergen
e of 
omplex patterns or information transfer, like in biology, dynami
al sys-tems and also in e
onomy, we hope to build a new model 
apturing the main features of
o-movements in 
ommodities derivative markets.

6



2
Data

Contents2.1 Derivatives markets sele
ted . . . . . . . . . . . . . . . . . . . . 82.1.1 Energy markets . . . . . . . . . . . . . . . . . . . . . . . . . . . 82.1.2 Agri
ultural markets . . . . . . . . . . . . . . . . . . . . . . . . 102.1.3 Finan
ial assets . . . . . . . . . . . . . . . . . . . . . . . . . . . 112.2 Presentation of the database . . . . . . . . . . . . . . . . . . . . 112.3 A brief overview of the time series . . . . . . . . . . . . . . . . 132.4 The seasonality of petroleum produ
ts . . . . . . . . . . . . . . 202.4.1 What literature says about seasonality . . . . . . . . . . . . . . 202.4.2 An attempt to identify the seasonal patterns . . . . . . . . . . 22In this 
hapter, we present the 
hara
teristi
s of our data. The �rst se
tion is devotedto a des
ription of the sele
ted markets and the e
onomi
 intuition whi
h has motivatedthe 
hoi
e of fourteen markets 
orresponding to three di�erent se
tors: energy, agri
ultureand �nan
ial assets. In the se
ond se
tion we present the database and te
hni
al skillsrelated to the building of pri
es' 
urves. The third se
tion gives a brief overview ot the7



Chapter 2. Datatime series'behavior. The last se
tion 
on
erns the seasonality of petroleum produ
ts andthe attempt to identify periodi
 patterns in the datas.2.1 Derivatives markets sele
tedIn this se
tion we present the markets sele
ted for the empiri
al study, namely energy,agri
ulture and �nan
ial assets.On the basis of the Futures Industry Asso
iation's monthly volume reports, we retainedthose 
ontra
ts 
hara
terized by the largest transa
tion volumes. The 
hoi
e of these threese
tors is motivated by the last observations of �nan
ial markets evolutions. Commoditiesderivative are more and more integrated: within the se
tor of 
ommodities and also withother markets. Furthermore, 
ommodities are 
onsidered as full �edged assets used in adiversi�
ation purpose by portfolio managers. Consequently, the pri
e in
rease of given
ommodities has been in part asso
iated to the 
hange of energy 
ommodities pri
es or
ould be explained by a priori foreign events like the de
rease of equities or ex
hange rates.The 
hoi
e of the di�erent markets within the three se
tors allow us to study di�erentkinds of relationships, that is to say the upstream/downstream phases of the industrialpro
ess in the petroleum �eld as between the soy oil and soy bean futures 
ontra
ts.2.1.1 Energy marketsFor this report, we 
olle
ted data on seven 1 energy markets: more pre
isely, we 
hoosethree futures 
ontra
ts on 
rude oil and four futures 
ontra
ts on petroleum produ
ts.The three futures 
ontra
ts on 
rude oil 
orrespond to:
• the Ameri
an light sweet 
rude oil negotiated in the United States, on the Chi
agoMer
antile Ex
hange Group (formerly the New York Mer
antile Ex
hange), whi
h1data on seven markets have been 
olle
ted, but due to a too short histori
al re
ord or unusablere
ontru
ted term stru
ture three markets (LTC, LHO and RBOB) have not been 
onsidered for theempiri
al investigation.8



2.1. Derivatives markets sele
tedis referred to as the NCL in this report. As illustrated by �gure 2.1, this futures
ontra
t is, by far, the most widely traded 
ommodity 
ontra
t in the world sin
eseveral years.
• the European light sweet 
rude oil negotiated in Europe, on the InterContinentalEx
hange, referred to as the LLC. This futures 
ontra
t is usually the se
ond one,worldwide, as far as its transa
tion volumes are 
on
erned.
• the Ameri
an light sweet 
rude oil negotiated in Europe, on the InterContinentalEx
hange, whi
h is referred to as the LTC 2.As far as the qualities are 
on
erned, we have data on the Ameri
an 
rude, usually 
alledthe WTI (West Texas Intermediate) and the European one, usually 
alled the Brent.These two qualities are negotiated in two di�erent geographi
 pla
es. Consequently, thepri
e di�erential between these two produ
ts should re�e
t both quality di�erential andtransportation 
osts 3.These 
rude oil markets being the most important - in the 
ommodity �eld - worldwide,they are 
hara
terized by the presen
e of long term expiration dates: up to 9 years in theAmeri
an market.We also retain the main futures 
ontra
ts on petroleum produ
ts, namely:
• the Ameri
an heating oil negotiated in the United States, on the CME Group, whi
his 
alled: NHO in this report
• the Ameri
an gasoline in the United States, on the CME Group, whi
h is 
alled:RBOB in this report2This 
ontra
t, whi
h was re
ently laun
hed in Europe, immediately en
ountered a huge su

ess. Itsoon be
ame the third 
ommodity futures 
ontra
t ex
hanged worldwide. We thus have two di�erentqualities of 
rude oil and two transa
tions pla
es.3The third 
ontra
t has the Ameri
an 
rude oil as its underlying asset. It is however negotiated inEurope. Thus only di�eren
e between the NCL and the LTC futures 
ontra
ts lies in the transa
tionpla
e and we expe
t that the pri
e di�erentials between these two 
ontra
ts will be very small (in otherwords, the links between these 
ontra
ts should be strong.) 9



Chapter 2. Data
• the European heating oil negotiated in Europe, on the ICE, namely the LHO
• the European gas oil negotiated in Europe,on the ICE, namely the LLE.Finally, we have 
ompleted the energy se
tor with two natural gas:
• the European natural gas nego
iated in Europe on the ICE, namely the LNG.
• the Ameri
an natural gas nego
iated on the CME group, namely the NNG.Thus this database gives us the possibility to study several kinds of relationships, that isto say:
• the upstream and downstream phases of the industrial pro
ess in the petroleum�eld, in Europe and in the United States
• futures 
ontra
ts 
orresponding to di�erent qualities and negotiated in di�erentgeographi
al pla
es2.1.2 Agri
ultural marketsThe re
ent develoment of biofuel rise our interest as it 
ould introdu
e strong 
onne
-tions between soft 
ommodities and petroleum produ
ts. We sele
ted four signi�
ativeagri
ultural markets:
• the Corn futures 
ontra
t nego
iated on the CBOT, namely the CC
• the Wheat futures 
ontra
t nego
iated on the CBOT, namely the CW
• the Soy Bean futures 
ontra
t nego
iated on the CBOT, namely the CS
• the Soy Oil futures 
ontra
ts nego
iated on the CBOT, namely the CBOThe two former futures 
ontra
ts, namely CS and CBO, give us the ability to study theupstream/downstream phases of the industrial pro
ess as the link between biofuel andother agri
ultural markets.10



2.2. Presentation of the database2.1.3 Finan
ial assetsWe have 
ompleted our databse with three �nan
ial assets:
• the Eurodollar interest rate futures 
ontra
t IED
• the Gold, 
onsidered as a safety asset NGC
• the Exange rate, Dollar/Euro CEU
• the Mini S&P500 ISM2.2 Presentation of the databaseWe sele
ted the futures markets 
hara
terized by the most important transa
tion volumesin three di�erent se
tors4, namely energy, agri
ulture and �nan
ial assets. We used twodatabases, Datastream and Reuters, in order to 
olle
t on a daily basis, settlement pri
es,opening pri
es, open interests and transa
tion volumes for ea
h market. In order to
on
entrate on the methodology of the empiri
al study we limited our empiri
al work onsettlement pri
es in this report. The original time series gave us the data through thelife of a spe
i�
 futures 
ontra
t. For example we obtain, for a 
ontra
t having a nineyears maturity, a time series beginning at the birth date of the 
ontra
ts and �nishing atits death. As one of the aims of our study is the analysis of pri
es behavior a

ording tothe maturity of the futures 
ontra
ts, we had to arrange these futures pri
es in order tore
onstitute, for ea
h market, daily term stru
tures of futures pri
es. The term stru
tureor pri
es 
urve indeed represents the relationship, at a spe
i�
 date, between futurespri
es having di�erent delivery dates. So we re
onstru
ted the delivery 
alendars of allthe futures 
ontra
ts, on the seven markets. Then we determined, month by month, whena spe
i�
 
ontra
t has, for example, a one- or a two-month maturity, and we identi�ed the4Sour
e: Futures Industry Asso
iation, Monthly volumes reports 11



Chapter 2. Data

Figure 2.1: Energy Futures and Options Worldwideday when the 
ontra
ts falls from the two- to the one-month maturities, from the three-to the two-month maturities, et
. This allowed us to obtain daily pri
es 
urves for all themarkets.With su
h a database, one of the di�
ulties 
omes from the fa
t that for one underlyingasset, the beginning of the time series frequently 
ontains less information than the end.In other words, the pri
es 
urve is shorter at the beginning of the time period. Indeed, astime goes on, the maturities of the futures 
ontra
ts usually rise on a derivative market.The growth in the transa
tion volumes of existing 
ontra
ts indu
es the introdu
tion ofnew delivery dates. Thus, in order to keep su�
iently long time periods for our analyses,and in order to have 
ontinuous time series, we had to withdraw some maturities from12



2.3. A brief overview of the time seriesthe database. On
e this sele
tion has been done, our database still 
ontains more than
655000 pri
es.Figure 2.2 summarizes the main 
hara
teristi
s of our database, and the data available,on
e the term stru
tures re
onstituted. First remark, the periods are quite di�erent forea
h market. Datastream a
tually does not give the possibility to re
onstitute very longtime series, and the length of the available time series 
hanges with the market. So thelonger time series displayed in table 2.2 (for the Ameri
an 
rude oil, for example) rely ondatabases previously 
olle
ted by the authors of this report.Last remark, the Ameri
an gasoline negotiated in the United States, namely the RBOBdoes not appear in this table. We indeed �nd out that on
e the term stru
tures werere
onstru
ted, the gasoline data where not utilizable, as illustrated by �gure 2.3. In this�gure, the bla
k line represents the one-month maturity (F1M), whereas the dotted linestands for the twelve months' maturity (F12M ). The abs
issa represents the time period,between 02/2007 and 09/2009. A qui
k glan
e at this �gure shows that they are suddendrops and spikes in the two series of futures pri
es. These variations also appear for theother maturities and 
an not be explained by e
onomi
 events. We thus de
ide to negle
tthese data.
2.3 A brief overview of the time seriesFigure 2.4 gives an overview of the behavior of the 
rude oil futures pri
es for the LLC,that is to say, for the Brent, between 2000 and 2009. Two maturities were sele
ted : onemonth (bla
k line) and eighteen months. The �gure exhibits �rst of all a huge 
hange inthe pri
es level, in 2004−2009: they indeed range from a lower level of 40$/b before 2004to the highest level of 150$/b. It also gives eviden
e of quite a dramati
 
hange in thepri
es' volatility, whi
h 
learly in
reases sin
e 2004. Finally, it shows that whereas theone-month maturity was usually higher, before 2004, than the eighteen months maturity,13
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Figure 2.2: Main 
hara
teristi
s of the 
olle
ted datas. The 
olumn "mnemoni
� refers tothe label of the futures 
ontra
t in Datastream, and the 
olumn entitled "Pla
e" indi
atesthe geographi
 lo
alization of transa
tions. The 
olumn "maturities" indi
ates the lastmaturity available.
14



2.3. A brief overview of the time series
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2007 2009Figure 2.3: Temporal evolution of the maturities 1 and 12 monthsthis hierar
hy seems to 
hange in the end of the period.We further explored this question trough the 
al
ulation of futures pri
es bases 5 asillustrated by �gure 2.5. The �gure 2.5 (b) represents, for example, two temporal basesfor the Ameri
an 
rude oil negotiated in the United States, the so-
alled WTI, between1988 and 2009. The dotted line stands for the relationship between the one- and thetwo-month maturities, that is to say:5The basis 
onsidered in this report is a temporal basis: it represents the di�eren
e between the spotand futures pri
es. More pre
isely, we expressed the temporal bases in per
entage, in order to avoid sizeorder e�e
ts. When the basis is positive, the market is in ba
kwardation; otherwise, it is in 
ontango.Lastly, as we did not have time series for spot pri
es, we 
hoose to approximate this variable with theone-month futures pri
e. Su
h an approximation is very frequent in empiri
al studies on 
ommoditymarkets. 15
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F2M − F1M

F1M
,whereas the bla
k line represent the basis between the two- and the three-months matu-rities, namely:

F3M − F2M

F2M
,As the di�eren
es between the two lines are not really easy to see on �gure 2.5 (b),let us just underline that, during this very long period (almost 21 years), the basis wasmost of the time positive. In other words, the market was in ba
kwardation. This is awell-known 
hara
teristi
 of the 
rude oil market. However, sin
e a few months, it seemsthat ba
kwardation (i.e. positive bases) might not be the rule anymore. Moreover, avery high 
ontango (i.e. negative basis) distinguishes the very end of the period. This16



2.3. A brief overview of the time seriesspike is all the more surprising that, in derivative markets, arbitrage operations betweenthe physi
al and paper markets should impose a limit on 
ontango situation, this limit
orresponding to the storage 
osts of the 
ommodity. Thus, either there was a storagedi�
ulty in the physi
al market at that date, or there is a sho
k that must be explainedby another phenomenon.Figure 2.6 presents the time evolution of the pri
es of the �rst (bla
k lines) and the latematurity (dotted lines) for three di�erent futures 
ontra
ts, namely the 
rude oil negoti-ated on the New York Mer
antile Ex
hange (NCL), the 
orn (CC ) and the mini 
ontra
ton the S&P500 (ISM ), both of them traded on the CME Group. The illustration showsthat our time period 
overs one 
risis for the 
ommodities, highlighted by a signi�
antpri
e's rise in the 
rude oil (NCL) and in the gold (CC ) whi
h does not appear for the�nan
ial asset (ISM ). The similarity between the 
ommodities pri
e's behavior is at the
ore of the debate related to the possible impa
t of institutional investors on the pri
esof 
ommodities.The bla
k and dotted lines also give an illustration on one of the most important featuresof the 
ommodity pri
es 
urve's dynami
: the di�eren
es in the behavior of �rst nearby
ontra
ts and deferred 
ontra
ts. The movements in the pri
e of the prompt 
ontra
tsare larger than the other ones. This results in a de
reasing pattern of volatilities alongthe pri
es 
urve. Indeed, the varian
e of futures pri
es and the 
orrelation between thenearest and subsequent futures pri
es de
line with maturity. This phenomenon is 
alledthe Samuelson e�e
t. For the �nan
ial asset (�gure 2.6 (
) and its inset), the two lines arealmost mixed up, while we 
an 
learly observe a ba
kwardation for the energy 
ommodity(�gure 2.6 (a)) and a 
ontango for the agri
ultural 
ommodity (�gure 2.6 (b)).A more pre
ise insight on the pri
es behavior at the end of the period is illustrated by the�gure 2.5 (
). This �gure indeed represents the same bases, on a shorter period, from 2000to 2009. Now the di�eren
es between the dark and the dotted lines appear 
learly. Thusthe �gure gives an illustration of one of the most important features of the 
ommodity17
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Figure 2.6: Time evolution of the pri
es of the �rst (bla
k lines) and last maturities(dotted lines) for futures 
ontra
ts representative of ea
h se
tor between 1998 and 2009.Figure (a) represents the evolution of 
rude oil pri
es (NCL), Figure (b) exhibits thatof 
orn pri
es (CC ), whereasFigure (
) is devoted to the S&P index (ISM ). The inset inFigure (
) represents a smaller time window where the two lines are easily distinguishable.pri
es 
urve's dynami
: the di�eren
e between the pri
e behavior of �rst nearby 
ontra
tsand deferred 
ontra
ts 6. The movements in the pri
es of the prompt 
ontra
ts are largerthan the other ones. This results in a de
reasing pattern of volatilities along the pri
es
urve. Indeed, the varian
e of futures pri
es and the 
orrelation between the nearest andsubsequent futures pri
es de
line with maturity. This phenomenon is usually 
alled theSamuelson e�e
t. Intuitively, it happens be
ause a sho
k a�e
ting the nearby 
ontra
tpri
e has an impa
t on su

eeding pri
es that de
reases as maturity in
reases [28℄. Asfutures 
ontra
ts rea
h their expiration date, they rea
t mu
h stronger to informationsho
ks, due to the ultimate 
onvergen
e of futures pri
es to spot pri
es upon maturity.These pri
e disturban
es in�uen
ing mostly the short-term part of the 
urve are due tothe physi
al market, and to demand and supply sho
ks. The Samuelson e�e
t seems how-ever parti
ularly important in the end of our observation period, suggesting that thereare quite a lot of noises (or sho
ks) a�e
ting the one-month time series.Lastly, �gures 2.5 (a) and 2.5 (
) display two temporal bases (respe
tively three-month6We obtained almost exa
tly the same �gure for the european 
rude oil market. 19



Chapter 2. Dataminus two-month over two-month and two-month minus one-month over one-month) forthe European gas oil between 2000 and 2007. The same general 
omments than thosealready proposed for the 
rude oil 
an be made for this petroleum produ
t: ba
kwardationis more frequent than 
ontango, ex
ept for the end of the period. Moreover, short termpri
es are more volatile.This brief overview of the futures pri
es behavior lead us to think, �rst that it 
ould be in-teresting to make a separation between the period before and after 2004-2005 and se
ond,that a separate analysis of ba
kwardation and 
ontango situations 
ould be fruitful.
2.4 The seasonality of petroleum produ
tsBefore pro
eeding with the empiri
al tests, we �rst took the time to study the question ofthe seasonality of petroleum produ
ts. The presen
e of su
h a phenomenon indeed mightin�uen
e the futures pri
es�behavior in two ways: �rst, it 
an 
reate auto
orrelations inthe time series; se
ond, it is frequently asso
iated with the sign of the temporal basis,namely the di�eren
e between the spot and the futures pri
es.In this paragraph, we will �rst re
all what literature says about the seasonality of energy
ommodities, and se
ond, we will present our attempt to identify seasonal patterns in theextra
ted time series.2.4.1 What literature says about seasonalityIn the energy �eld, some 
ommodities are known for showing seasonal �u
tuations: ele
-tri
ity, natural gas, heating oil and gasoline / gas oil (as we did not 
olle
t, for this report,data on natural gas and ele
tri
ity, we only mention them here for the re
ord). This sea-sonality is due to 
hanging 
onsumption as a result of weather patterns. Usually, it is notsupposed to in�uen
e the 
rude oil markets.20



2.4. The seasonality of petroleum produ
tsAs far as seasonality 7 is 
on
erned, heating oil and gas oil (and/or gasoline) marketsusually move in opposite ways. In both 
ases, there is a low and a high season. However,the high season for heating oil 
orresponds to the low season for gas oil and vi
e andversa. In the 
ase of gasoline, the high 
onsumption period 
orresponds to the holidaysand, more spe
i�
ally to the summer, whereas in the 
ase of heating oil, pri
es spikesessentially take pla
e in winter. Sin
e the turn of the 
entury however, a se
ond periodof high 
onsumption for heating oil takes pla
es in the summer, for air-
onditioning pur-poses. This is espe
ially true for the United States. Thus a lot of authors re
ognize thepresen
e of a seasonality e�e
t in petroleum produ
ts, with one or two periods of high
onsumption, a

ording to the observation period and to the pla
e of 
onsumption.Another interest aspe
t of the seasonality is that it 
reates a spe
i�
 behavior of theirtemporal bases. The heating oil market is frequently in ba
kwardation from De
ember toMar
h, whereas the gasoline market in 
hara
terized by the presen
e of inverse 
arrying
harges from June to November. Moreover the two produ
ts are supposed to have oppo-site behavior: when one of them is in 
ontango, the other one is in ba
kwardation. Thisis due to the fa
t that the re�ning pro
ess is a joint produ
tion pro
ess 8.

7For more information on the seasonality of petroleum produ
ts, see for example D. Pilipovi
, 2007,Energy risk : valuing and managing energy derivatives, 512 p, Ma
 Graw [24℄.8For more details on these points, see for example D. Lautier, 2000, La stru
ture par terme des prix des
ommodités : analyse théorique et appli
ations au mar
hé pétrolier, Thèse, Université Paris Dauphine[16℄, or Edwards F.R., Canters M .S., 1995, The Collapse of Metallgesells
haft : unhedgeable risks, poorhedging strategy, or just bad lu
k ?, The journal of futures markets, 15(3), 211-264 [8℄. 21



Chapter 2. Data2.4.2 An attempt to identify the seasonal patternsOur �rst attempt to identify the seasonal patterns 9 in the data 
onsisted in a graphi
alanalysis. We examined the heating oil and gas oil data, year by year, in order to �ndeviden
e of a seasonal patterns. We �rst found that it was probably possible to identify, forea
h market, a one-period seasonality, with a high and a low season. However these highand low seasons slightly 
hanged ea
h year. We also try to 
ompute the temporal basisfor this petroleum produ
ts, in order to make sure that the high seasons 
orrespondedto ba
kwardation whereas the low season exhibited 
ontangos. The results however werenot 
onvin
ing. We thus pro
eeded with a more formal method: the frequen
y domainanalysis.In this paragraph, we �rst brie�y expose this method. We then present its appli
ationsto our data. Lastly, we 
on
lude.Frequen
y domain analysisThe frequen
y domain representation, or Dis
rete Fourier Transform (DTF) is a math-emati
al pro
edure that transforms a dis
rete fun
tion into another, whi
h is 
alled thefrequen
y domain representation. The latter provides a de
omposition in frequen
ies,and their asso
iated strength, rather than a de
omposition in time. While the originalsignal expresses the value of the fun
tion f(t) at the time t, the frequen
y domain givesthe strength of ea
h frequen
y whi
h is present in the original time series. When a spe-
i�
 pattern o

urs fairly regularly in the signal, the DTF gives the value as well as the9Two main methods are usually used to take a

ount of seasonal �u
tuations. The �rst is to de-seasonalise the data by, for example, a moving average method before estimation. The se
ond is to useparti
ular dummy variables during estimation. The �rst method 
an be 
riti
ized on several 
ounts.Firstly, the moving averages are based on an overlapping pro
ess that 
reates additional auto
orrelation.Se
ondly, 
umulating averaging is a smoothing devi
e and may tend to obs
ure some of the �ner move-ments in the series we are 
onsidering. The se
ond method amounts to enhan
e the information asso
iatedto a spe
i�
 variable and to spe
ify, for ea
h pri
e, its season. For more details on these methods, see forexample Introdu
tory e
onometri
s M.B. Stewart and K.F.Wallis, Basil Bla
kwell, se
ond edition, 1990,337 p [30℄.22
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Figure 2.7: Frequen
y domain representation. Figure (a) plot of the fun
tion f(t) =
cos (ω1t) + cos (ω2t) + cos (ω3t). Figure (b) dis
rete fourier transform of f(t).strength of this repeated pattern.The �gure 2.7 gives an illustration of this method. On 2.7 (a), we plot the fun
tion:

f(t) = cos (ω1t) + cos (ω2t) + cos (ω3t) , (2.1)where the ωi are the frequen
ies and the periods Ti are given by:
Ti =

ωi

2π
(2.2)In this example, the signal 
omes from a mathemati
al periodi
 fun
tion. The graphi
representation of this signal shows that there are three periods: a long one, of duration

6, a shorter one, of duration 3, and the shortest, of duration 2. The �gure 2.7 (b) givesthe frequen
y representation of this signal. We 
an observe three peaks lo
alized at a
hara
teristi
 period of the original signal. These three peaks 
on�rm what 
an be seenon �gure 2.7 (a): there are three distin
t patters repeated with periods T1, T2 and T3. 23



Chapter 2. DataIn the 
ase of empiri
al data, however, the interpretation of the original signal is far fromobvious. The data are a�e
ted by noises and �nding periodi
 patterns is not simple.Dis
rete Fourier Transform of petroleum pri
esIn our attempt to identify the seasonal pattern of petroleum pri
es, we de
ided to usea dis
rete fourier transform for two di�erent markets: 
rude oil and heating oil. The�rst of these two markets was used as a referen
e pre
isely be
ause it is not supposed toexhibit a 
y
li
al behavior. We de
ided to use three months futures pri
es in order toavoid the presen
e of potential noises in the nearest 
ontra
ts. The �gure 2.8 presents theresults obtained on these two markets. The left side of the �gure pi
tures the behaviorof the futures pri
es on the observation period. The right side gives the result of thetransformation.The interpretation of the results is by far not straightforward. The two series exhibitquite similar patterns, that is to say, we do not �nd eviden
e of a spe
i�
 
y
li
al behaviorin the heating oil data, espe
ially if we 
ompare them with the 
rude oil data. Severalreasons 
an explain su
h a result. First, our observation period on heating oil starts in1998, namely roughly at the date when the 
onsumption of this petroleum produ
t forair-
onditioning purposes really began. Maybe the presen
e of this se
ond period of high
onsumption smoothes the pri
es behavior, and makes it more di�
ult to identify the
y
li
al behavior. Another possible reason is that for these markets, even if we have 4000(for the heating oil) and 8000 (for the 
rude oil) daily observations, the data are notsu�
iently abundant to give eviden
e of a seasonal pattern. These results leaded us to
on
lude that we should not try to take into a

ount the seasonality of our data.We brie�y remind the main features of this 
hapter. Firstly we built a database whi
hin
ludes a 
risis a�e
ting ,at least, the energy and agri
ultural markets. Then, we dete
teda similar pri
es's behavior of the 
ommodities, whi
h is not observed for the �nan
ialassets. Finally, we were not able to give an eviden
e of the seasonality of the petroleum24
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ts. Consequently, the question of the seasonality will not been taken into a

ountin our analysis.
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Chapter 3. Methodology
In this 
hapter we present the tools used to perform the analysis of the integrationderivative markets. In the �rst se
tion we expose a 
orrelation-based method whi
h al-lows to transform a 
orrelation matrix into a distan
e matrix. The former is then used tobuild the so-
alled Minimum Spanning Tree whi
h allows to study the links between themost 
orrelated assets. The se
ond se
tion is devoted to the des
ription of the topolog-i
al properties of the trees. We present how to extra
t e
onomi
al information from thevisualization as from allometri
 properties of the trees. In the third se
tion we expose thedynami
al measures used to study the temporal dimension.From a physi
ist point of view, �nan
ial markets are very 
hallenging 
omplex systems.Among the di�erent tools whi
h were developed and used in this �eld, one seems naturallyrelevant to perform a three-dimensional analysis of the integration of derivative markets:the graph theory, also referred to as networks analysis. A graph 
an be de�ned as a math-emati
al representation of pairwise relationships within a 
olle
tion of dis
rete entities.Representing a �nan
ial market as a graph is appealing be
ause su
h a system is 
om-posed of a large number of assets, su
h as equities, bonds, sto
ks or derivative produ
ts.The graph gives a way to des
ribe all the links (edges) 
onne
ting these entities (nodes).Moreover, the graph 
an be weighted in order to represent the di�erent intensities of theselinks and/or nodes.The graph theory has re
eived a lot of attention from the physi
ist 
ommunity duringthe last de
ade. Today, it is used in order to des
ribe various 
omplex systems su
h asbiologi
al 
ells, bio
hemi
al rea
tions, the Internet, and �nan
ial markets. Among thedi�erent tools and measures re
ently developed we sele
ted, for our study, those allowingus to analyze market integration in a three-dimensional approa
h.We �rst de
ided to represent our pri
es system through the study of the 
orrelations ofreturns. Having transformed these 
orrelations into distan
es, we were able to draw a full
onne
ted graph of our system, where the nodes of the graph represent the di�erent time28



3.1. Preliminary studies on integrationseries of futures pri
es. The dimension of our 
orrelation matrix being high, in order to�lter the information 
ontained in the graph, we rely on spe
i�
 graphs, namely minimumspanning trees. The method used to build minimum spanning trees is presented in these
ond se
tion of this 
hapter. In order to understand the organizing prin
iples and thedynami
 behavior of these trees, we employed a method whi
h is presented in the thirdse
tion of this 
hapter.
3.1 Preliminary studies on integrationThe �nan
ial literature has investigated the question of integration through di�erent ways.As early as 1990, [25℄ began to study the herding behavior of investors on 
ommodityderivative markets. Their seminal work shows that the persistent tenden
y of 
ommoditypri
es to move together 
an not be totally explained by the 
ommon e�e
ts of in�ation,ex
hange rates, interest rates and other ma
ro-e
onomi
 variables. It has inspired severalother resear
hes on 
o-movement. Yet, in this kind of work the identi�
ation of the rel-evant e
onomi
 variables is tri
ky. This 
ould explain why empiri
al tests do not reallysu

eed in 
on
luding that there is herding behavior in 
ommodity markets.Fo
using on spatial integration, [14℄ initiated another approa
h to the systemi
 risk in
ommodity markets. Su
h a study is 
entered on the relationships between the pri
esof raw materials negotiated in di�erent pla
es. The authors initiated several works onspatial integration, based on the methodology of the 
o-integration. The empiri
al testsshow that 
ommodity markets are more and more spatially integrated. In the same vein,[4℄ examined the links between sto
k and 
ommodity markets. They were however notable to 
on
lude that the former have an in�uen
e on the latter.Integration has also a temporal dimension, in the sense of the preferred habitat theory([21℄). In [17℄, the author studied the segmentation of the term stru
ture of 
ommoditypri
es and examined the propagation of sho
ks along the pri
es 
urve, on the 
rude oil29



Chapter 3. Methodology

Figure 3.1: List of 
ommodities investigated by the authors of [29℄.petroleum markets. She showed that temporal integration progresses trough time.In statisti
al physi
s, the minimum spanning tree is the tool that is the most heavily usedin order to understand the evolution of 
omplex systems, espe
ially when these systemsare �nan
ial assets. Other �ltering pro
edures have been used by di�erent authors, [19℄,and provide di�erent aspe
ts of the information stored in the investigated sets.In the pionneer work of [18℄, relying on minimum spanning trees, the author sinvestigates
ross 
orrelations of asset returns and identi�es a 
lustering of the 
ompanies under inves-tigation. In [2℄, the authors use this 
orrelation based method in order to examine sto
ksportfolios and �nan
ial indexes at di�erent time horizons. They also apply this methodin order to falsify widespread markets models, on the basis of a 
omparison between thetopologi
al properties of networks related to real and arti�
ial markets. The �ltering ap-proa
h based on the minimum spanning tree 
an also be used to 
onstru
t a 
orrelation30



3.2. Minimum Spanning Trees: a 
orrelation-based methodbased 
lassi�
ation of relevant e
onomi
 entities su
h as banks or hedge funds, [20℄. Lastbut not least, the robustness over time of the minimum spanning tree's 
hara
teristi
shas also been examined in a series of studies, like for example [15℄ and [23℄.As far as 
ommodities are 
on
erned, [29℄ re
ently proposed a study of 
ommodities 
lus-tering using minimum spanning trees and statisti
al physi
s tools. Whereas they foundeviden
e of a market syn
hronization, whi
h is a 
ru
ial point when aiming at understand-ing systemi
 risk, some 
riti
isms 
an be made. First, the database used in [29℄ 
ontains
ommodities 
hara
terized by a low transa
tion volume, whi
h 
an introdu
e noise in the
orrelation matrix. Se
ond, they do not examine the maturity dimension of the futures
ontra
ts.
3.2 Minimum Spanning Trees: a 
orrelation-based methodIn order to study the links between assets and /or maturities, we �rst of all 
ompute thesyn
hronous 
orrelation 
oe�
ients of the pri
es returns. This 
oe�
ient matrix is thestarting point of our analysis. In order to use the graph theory, there was however a needto quantify a distan
e between the elements under examination. We thus extra
ted ametri
 distan
e from the 
orrelation matrix. We then had the possibility to build somegraph. Lastly, we used a �ltering pro
edure in order to identify the minimum spanningtree ([18℄). Su
h a tree 
an be brie�y de�ned as the one providing the best arrangement ofthe di�erent points of the network, that is to say, the one that identify the most relevant
onne
tions between points.3.2.1 The 
orrelation matrixIn order to measure the degree of similarity between the syn
hronous time evolution offutures 
ontra
ts, we built a matrix of 
orrelation 
oe�
ients. The latter are de�ned as31



Chapter 3. Methodologyfollows:
ρij (t) =

〈rirj〉 − 〈ri〉 〈rj〉
√

(

〈r2
i 〉 − 〈ri〉

2) (〈

r2
j

〉

− 〈rj〉
2)

, (3.1)where i and j are pairs of assets (that is to say, i and j stand for the nearby futures pri
esof pairs of assets like 
ommodities, interest rates, sto
ks, and 
urren
ies) when spatialintegration is under s
rutiny, pairs of delivery dates when we fo
us on maturity integration,or a mix of the two when a three-dimensional analysis is performed. The daily logarithmpri
e di�erential stands for pri
es returns, with ri = (ln Fi(t)− ln Fi (t−∆t)) /∆t, where
Fi(t) is the settlement pri
e of the futures 
ontra
t at the instant t. ∆t is the time horizon,and 〈.〉 denotes the statisti
al average performed other time, on the trading days of theinvestigated time period.By de�nition the 
orrelation 
oe�
ient ρij (t) 
an vary from−1 (
omplete anti-
orrelation)to 1 (
omplete 
orrelation). Lastly, when ρij (t) = 0, there is no 
orrelation.For a given time period and a given set of data, we thus 
omputed the N × N matrixof 
orrelation 
oe�
ients C, for all the pairs ij. C is symmetri
 with ρij = 1 in themain diagonal where i = j. Consequently, su
h a matrix is 
hara
terized by N (N − 1) /2
oe�
ients.In order to study the 
orrelations of returns and their statisti
al properties, we mainlyfollow [29℄. More pre
isely, in order to examine the time evolution of our system andits sensibility to spe
i�
 market events, we also investigate the mean 
orrelations of thereturns and their varian
es.The mean 
orrelation CT (t) for the 
orrelation 
oe�
ient ρT

ij in a time window [t−∆T, t]
an be de�ned as follows:
CT (t) =

2

N (N − 1)

∑

i<j

ρT
ij (t) , (3.2)
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3.2. Minimum Spanning Trees: a 
orrelation-based methodThe varian
e σ2
C of the mean 
orrelation is given by:

σ2
C =

2

N (N − 1)

∑

i<j

(

ρT
ij (t)− CT (t)

)2
. (3.3)While 
omputing the mean 
orrelations and their varian
es, we examined the windowsize dependan
e of these quantities (needless to say, this problem also has an in�uen
e onother investigated quantities, su
h as node strength, tree length, main o

upation layersand survival ratios). The 
hoi
e of the size of the time window ∆T is a 
ompromisebetween the noise's level and a good statisti
al averaging. A large window de
reasesthe noise's level but also gives averages over a too long time period. The sele
tion ofdi�erent time windows (i.e. ∆T = 20, 120, 240, 480 and 960 trading days) and thestudy of the 
orresponding size e�e
ts lead us to 
hoose a window's length of 480 days forall the quantities whi
h are used in this study. This value is smaller than those usuallyen
ountered in physi
s. It however allows us to grasp �ner market's evolutions.3.2.2 From the 
orrelation matrix to the distan
e matrixIn the sear
h for a des
ription of futures pri
es relying on the graph theory, there is a needto introdu
e a metri
. The 
orrelation 
oe�
ient ρij indeed 
annot be used as a distan
e

dij between i and j be
ause it does not ful�ll the three axioms that de�ne a metri
 [11℄:
• dij = 0 if and only if i = j,
• dij = dji

• dij ≤ dik + dkjA metri
 dij 
an however be extra
ted from the 
orrelation 
oe�
ients through a nonlinear transformation. Su
h a metri
 is de�ned as follows:
dij =

√

(2 (1− ρij)). (3.4)33
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Figure 3.2: Distan
e dij between two 
ommodities or delivery dates as a fun
tion of the
orrelation 
oe�
ient ρij .
Thus the distan
e matrix D is extra
ted from the 
orrelation matrix C a

ording tothe equation (5.2). C and D are both N × N dimensional. As illustrated by �gure(3.2), while the 
oe�
ients ρij 
an be positive for 
orrelated returns or negative for anti-
orrelated returns, the distan
e dij representing the distan
e between pri
es returns isalways positive.With su
h a metri
, the �rst axiom de�ning a metri
 is valid be
ause dij = 0 if andonly if the 
orrelation is total (namely, only if the two futures pri
es follow the samesto
hasti
 pro
ess). The se
ond axiom is valid be
ause the 
orrelation 
oe�
ient matrix
C is symmetri
. Hen
e, the distan
e matrix D is symmetri
 by de�nition. The thirdaxiom is valid be
ause equation (5.2) is equivalent to the Eu
lidian distan
e between twove
tors .The distan
e matrix D 
an then be employed in order to build the graph that 
onne
t allthe elements of the system.34



3.2. Minimum Spanning Trees: a 
orrelation-based method3.2.3 From full 
onne
ted graphs to Minimum Spanning Trees(MST)A graph gives a representation of pairwise relationships within a 
olle
tion of dis
reteentities. A simple 
onne
ted graph represents all the possible 
onne
tions between the Npoints under examination with N − 1 edges. Ea
h point of the graph 
onstitutes a nodeor a vertex.A weighted graph gives more information than a simple one, whi
h just des
ribe theexisting relationships between the elements of the system being des
ribed. The weightsindeed give some information about the intensity of the relationships. Su
h weights 
anfor example represent the distan
e separating the nodes.Previous studies of 
omplex networks have lead to the 
on
lusion that su
h systems 
an-not be des
ribed by simple or even weighted graphs. In order to fully understand thedynami
s of the system and its organizing prin
iples, there is a need to span the graph,i.e. to traverse all its nodes. However, starting from one node and going to the next oneuntil all the graph has been spanned, there are a lot of di�erent paths. In other words,there are a lot of spanning trees. The aim of the analysis relying on graph theory is toretain all the important information while having a simple representation of this informa-tion. Minimum spanning trees have proven to give a simple and e�
ient answer to thisproblem. In a weighted graph, the minimum spanning tree (MST) is the tree spanning ofthe nodes of the graph, without loops, having less weight than any other. It thus givesthe shortest path linking all nodes between them. The links of the MST are a subset ofthe links of the initial graph. Figure (3.3) gives an example of su
h a MST, for a graphhaving weighted links between its di�erent nodes. It also shows that a single 
onne
tedgraph has many spanning trees.The MST asso
iated with a distan
e matrix 
an be built as follows ([18℄). The MST isprogressively built up by linking all the elements of the set under examination in a tree
hara
terized by a minimal distan
e between nodes. The �rst step 
onsists in ordering the35
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Figure 3.3: Example of a minimum spanning tree 
onstru
ted from a graph with weightededges. The minimum spanning tree (MST) is a parti
ular subgraph of the original one.The MST 
overs all the points with the less weighted path (bla
k line) and withoutforming any loop.non-diagonal elements of the distan
e matrix D in in
reasing order. The starting pointis then the pair of elements with the shortest distan
e. At this stage, the MST is just
omposed by these two elements. Starting from one or the other of these two elements,the next smallest distan
e is determined, adding thus a third element in the MST. By
ontinuing, the tree in
ludes a fourth element, a �fth one, and so on. If the next smallestdistan
e 
on
erns two elements whi
h are already in the MST, this distan
e is ignored, inorder to avoid loops. In our study, we used Prim's algorithm ([27℄) in order to built theminimum spanning trees. As des
ribed above, starting from a single node, this algorithm
ontinuously in
reases the size of a tree until it spans all the verti
es of a 
onne
ted graph.The MST is attra
tive be
ause through a �ltering pro
edure10, it provides for an arrange-ment of the di�erent points of the graph whi
h reveals the most relevant 
onne
tions ofea
h elements of the system. In the 
ontext of our study, it gives us a syntheti
 way to ob-serve the 
onne
tions between di�erent assets and maturities. As the minimum spanning10The MST 
an be 
onsidered as a �lter as during its 
onstru
tion, we are redu
ing the informationspa
e from N(N − 1)/2 separate 
orrelation 
oe�
ients to N − 1 tree edges.36



3.3. Topology of the Minimum Spanning Treestree is a path between nodes with a minimal distan
e, it is also, a

ording to equation(5.2) the path between the most 
orrelated nodes. Thus, su
h a method 
an be seen as away to reveal the underlying me
hanisms of systemi
 risk: the minimal spanning tree 
anbe interpreted as the easiest path for a sho
k to propagate in three dimensions: spa
e,maturity and observation time.3.3 Topology of the Minimum Spanning TreesThe �rst information given by a minimum spanning tree is the kind of arrangement foundbetween the verti
es. So a �rst step of the study of minimum spanning trees lies in thevisualization of the trees. After a simple graphi
 representation of the MST, we use themethod of the allometri
 
oe�
ients in order to quantify wether the �ltered network istotally organized, totally random, or is situated somewhere between these two extremekinds of organization.3.3.1 Visualization and des
ription of the MSTThe visualization of the trees is the �rst step of the analysis of a 
omplex system throughthe method of the MST. It is a very important step, as the meaningfulness of the taxonomythat will emerge of the system through the representation of the trees will be one ofthe main justi�
ations for the use of the method. In our study, the analysis of thegroups formed by the di�erent underlying assets in the spa
e and the examination of theorganization of the di�erent delivery dates will be very interesting.After visualizing the MST, there is a need to des
ribe and interpret the graphs. In ourthree-dimensional analysis of the integration of derivative markets, we propose the use ofa distin
t terminology a

ording to the dimension under examination. In order to des
ribethe grouping of underlying assets in the spa
e, we will use the term se
tor, whereas inorder to des
ribe the grouping of delivery dates in the maturity dimension, we will retain37



Chapter 3. Methodologythe word 
luster. In both 
ases, the term bran
h will refers to a subset of the tree. Inaddition, in order to des
ribe the graph, there is a need for a referen
e point. In our 
ase,the referen
e is the 
entral node. We will 
ome ba
k to this 
on
ept while presenting thenotion of the mean o

upation layer.3.3.2 Allometri
 behavior of the MSTOne step further in the interpretation of the information given by the MST is the analysisof its randomness. Star-like trees are symptomati
 of a random organization of the ele-ments of the system, whereas 
hain-like trees reveal a very strong organization. In orderto determine wether our �ltered networks are totally organized, totally random, or wherethere are lo
ated between these two extreme kinds of organization, we de
ided to studythe allometri
 behavior of the MST.The �rst model of the allometri
 s
aling on a spanning tree was developed by [1℄. The�rst step of the pro
edure 
onsists in initializing ea
h node of the tree with the value 1.Then the root or 
entral vertex of the spanning tree must be identi�ed. In what follows,the root is de�ned as the node having the highest number of links atta
hed to him11.Starting from this root, the method 
onsists in assigning two 
oe�
ients Ai and Bi toea
h node i of the tree. Su
h 
oe�
ients are de�ned as follows:
Ai =

∑

j

Aj + 1 and Bi =
∑

j

Bj + Ai, (3.5)where j stands for all nodes 
onne
ted to i in the MST. The allometri
 s
aling relation isde�ned as the relation between the two allometri
 
oe�
ients Ai and Bi:
B ∼ Aη, (3.6)11There are a
tually several de�nitions for the 
entral vertex, as will be explained a bit later in thisse
tion, in the paragraph devoted to the mean o

upation layer38



3.4. Dynami
 analysis of the Minimum Spanning Treeswhere the exponent η is 
alled the allometri
 exponent. The latter represents the degreeor randomness of the tree and stands between two extreme values: 1+ for star-like treesand 2− for 
hain-like trees.3.4 Dynami
 analysis of the Minimum Spanning TreesMinimum Spanning Trees are appealing be
ause of the information revealed by theirtopology. However, su
h a 
orrelation based method is intrinsi
ally time dependent. Thus,there is a need to study the time dependent properties of the MST. In our 
ase, as theMST re�e
ts the temporal state of the markets under 
onsideration, we will parti
ularlyfo
us on the possible 
onsequen
es of markets events on the stru
ture of the system.In order to study the robustness of the trees' topology, we use several measures. We �rst
al
ulate the nodes strength, whi
h gives an information on how mu
h a node is 
orrelatedto the others in the MST. The graph lengths reveals the state of the system at a spe
i�
time. We next use the 
on
epts of 
entral vertex and mean o

upation layer in order toappre
iate the 
ompa
tness of the trees. Lastly, survival ratios indi
ate how the topologyof the trees evolves with time.3.4.1 Node's strengthThe node's strength Si is de�ned as follows:
Si =

∑

i6=j

1

dij
. (3.7)This quantity, 
al
ulated for ea
h node i, indi
ates the 
loseness of one node i to the othersand in our 
ase, give thus an information on the intensity of the 
orrelation between thisnode and the others. When Si is high, the node is 
lose to the others whereas when itis low, the node is far from the others. Lastly, the node strength gives the possibility to39



Chapter 3. Methodologyundertake stati
 and dynami
 analysis. It indeed 
an be 
omputed over the entire periodunder examination or it 
an be measured on the basis of rolling windows having a size
∆T .3.4.2 Tree's lengthAnother interesting quantity is the normalized tree's length, whi
h 
an be de�ned as thesum of the lengths of the edges belonging to the MST:

L (t) =
1

N − 1

∑

(i,j)∈MST

dij, (3.8)where t denotes the time at whi
h the tree is 
onstru
ted, and N − 1 is the number ofedges present in the MST.The length of a tree is all the more important that the distan
es are high, that is to say, inour 
ase, that the 
orrelations are low. Thus, the more the length of the tree diminishes,the more integrated the system is.3.4.3 Central vertex and mean o

upation layerThe 
entral vertex and the mean o

upation layer allow to appre
iate the degree of the
ompa
tness of a graph. Understanding the 
on
ept of the 
entral vertex, or root ofthe tree, is a prerequisite for the use of the mean o

upation layer. Su
h a 
on
ept isvery important for the analysis of the topology and dynami
 behavior of the networks,espe
ially when studying �nan
ial markets integration.The 
entral vertex 
an be de�ned as the parent of all other nodes in the tree. It is thusa referen
e point in the three, against whi
h the lo
alization of all other verti
es is set.This 
on
ept is very important in our 
ase, as if a sho
k emerges at this spe
i�
 node, itwill have a more important impa
t than anywhere else in the tree. Moreover, su
h a nodewill be the preferred one for the transmission of a sho
k.40



3.4. Dynami
 analysis of the Minimum Spanning TreesThere are several ways to de�ne the 
entral vertex of a tree. [23℄ propose three alternativede�nitions. A

ording to the �rst one, the 
entral vertex is the node with the highestvertex degree, namely the highest number of edges whi
h are in
ident with the vertex(this de�nition is the one retained for the 
omputation of the allometri
 
oe�
ients).The se
ond de�nition 
orresponds to the weighted vertex degree 
riterion and de�nes the
entral vertex as the one with the highest sum of those 
orrelation 
oe�
ients that areasso
iated with the in
ident edges of the vertex. In su
h a 
ase, more weight is given toshort links, whereas in the �rst de�nition, ea
h departing node was weighted in the sameway. In order to present the third de�nition, let us �rst introdu
e the mean o

upationlayer proposed by the authors.This quantity L 
an be 
omputed in the following way:
L =

1

N

∑

i

l (vi) , (3.9)where l (vi) is the level (layer) of the vertex i. This measure must not be 
onfused withthe distan
e dij between nodes. The level says, indeed, how far the node i is to the 
entralnode, whose level is set to zero.The mean o

upation layer L indi
ates the layer where the mass of the tree is lo
ated.The node minimizing the mean o

upation layer is the 
enter of the mass, given that allnodes are assigned an equal weight and 
onse
utive layers are at equidistan
e from oneanother.This quantity, displaying information about the topology of the tree, 
an be 
omputedon the whole period, or dynami
ally. In a dynami
 analysis, a low value of the meano

upation layer re�e
ts an homogeneous behavior of the di�erent elements of the systemunder investigation.The existen
e of several de�nitions naturally indu
es to dis
uss the 
hoi
e of a spe
i�
de�nition and the identi�
ation of the 
entral vertex. Following [23℄, we 
hoose the mean41



Chapter 3. Methodologyo

upation layer be
ause the �rst and se
ond de�nitions of the 
entral vertex are lo
alin nature, whereas the mean o

upation layer gives a global appre
iation of the topologyof the tree. Even if this 
hoi
e 
an be 
onsidered as arbitrary, it is not 
ru
ial, as theauthors showed that the three de�nitions yield to similar and even, in most 
ases, identi
al
on
lusions.3.4.4 Survival ratiosFinally we examined the robustness of the MST over time by analyzing the single stepsurvival ratio SR of links. This quantity refers to as the fra
tion of 
ommon links betweentwo 
onse
utive MST, at times t and t− 1 ([23℄):
SR (t) =

1

N − 1
|E (t) ∩ E (t− 1)| . (3.10)In this equation, E(t) refers to the set of edges of the tree at time t, ∩ is the interse
tionoperator, and |..| gives the number of elements in the set. Under normal 
ir
umstan
es,the topology of the trees for two 
onse
utive steps should be very stable, at least for smallvalues of the windows length's parameter ∆T . While some �u
tuations of the survivalratios might be due to real 
hanges in the behavior of the system, it is worth noting thatothers may simply be due to noise. In our study, we will fo
us on strong �u
tuations ofsurvival ratios and examine whether or not strong trees re
on�gurations do 
oin
ide withspe
i�
 market events. We will also naturally examine the eventual presen
e of trends inthe evolution of these ratios.
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4
Networks analysis of the Energy se
tor
Contents4.1 Maturity integration of two energy markets . . . . . . . . . . 444.1.1 Temporal integration of the Heating Oil (NHO) . . . . . . . . . 444.1.2 Temporal integration of the Crude Oil (NCL) . . . . . . . . . . 444.2 Spatial integration of energy markets . . . . . . . . . . . . . . 474.2.1 Maturities 1, 2 and 3 months . . . . . . . . . . . . . . . . . . . 474.2.2 Maturity 6 months . . . . . . . . . . . . . . . . . . . . . . . . . 494.2.3 Maturity 12 months . . . . . . . . . . . . . . . . . . . . . . . . 494.3 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50In this 
hapter we apply the methodology of minimum spanning trees on the Energysubset and mainly fo
us on the topologi
al properties of the 
orrelations. We �rst in-vestigate the 
orrelations between maturities for two di�erent markets, namely the NCLCrude and the NHO Heating Oil. Then we examine the spatial relations between 
rudeoil and petroleum produ
ts at di�erent maturities.43



Chapter 4. Networks analysis of the Energy se
tor4.1 Maturity integration of two energy marketsThe test of temporal integration should re�e
t the presen
e of the Samuelson e�e
t on thedata. In an ideal 
ase, the maturities would be perfe
tly organized, ranging regularly fromthe �rst to the last delivery date. Consequently, the topology of the minimum spanningtrees should be linear.4.1.1 Temporal integration of the Heating Oil (NHO)In order to examine 
orrelation between maturities for the NHO Heating Oil, we have
onsidered two series of eighteen and thirty-six maturities. In both 
ase, the minimumspanning tree is extra
ted from the distan
e matrix and the 
orrelation 
oe�
ients are
omputed for all pairs of maturities between 07/07/98 and 10/09/09 for eighteen maturi-ties and between 16/04/07 and 10/09/09 for the thirty-six maturities. Within these twoperiods we have only averaged over the days when all the 
ontra
ts were traded. The�gure 4.1 shows the links between one month to eighteen months' maturities 4.1 (a) andone to thirty-six months' maturities 4.1 (b). In both 
ases, the topology of the minimumspanning trees are identi
al. The trees are linear, without bran
hing point, and the ma-turities are perfe
tly ordered. This results a
t as a test for our methodology as a linearstru
ture is expe
ted from the Samuelson e�e
t.4.1.2 Temporal integration of the Crude Oil (NCL)We have then studied three series of maturities for the NCL. We have observed one to�fteen months' maturities between 06/21/89 and 07/29/09, one to eighteen maturitiesbetween 07/16/90 and 07/29/09 and one to twenty-eight months' maturities (plus thirty-six, forty-eight and sixty months' maturities) between 03/20/97 and 07/29/09.For the three series, the topology are similar to those obtained for the NHO Heating Oil,and are roughly linear with ordered maturities 4.2 (a, b) and 4.3. A 
omparison of the44



4.1. Maturity integration of two energy markets
HEATING OIL US-US

(a)

(b)

1M-2M-3M-4M-5M-6M-7M-8M-9M-10M-11M-12M-13M-14M-15M-16M-17M-18M

1M-2M-3M-4M-5M-6M-7M-8M-9M-10M-11M-12M-13M-14M-15M-16M-17M-18M

36M-35M-34M-33M-32M-31M-30M-29M-28M-27M-26M-25M-24M-23M-22M-21M-20M-19MFigure 4.1: Links between maturities for NHO Heating Oil. Figure (a) eighteen maturitiesbetween 07/07/98 and 09/10/09. Figure (b) thirty-six maturities between 16/04/07 and09/10/09.three minimum spanning trees indi
ates that when longer maturities are added to thegraph, the shortest maturities are more ordered. As the longer maturities appear at theend of our database, this ordering pro
ess of the shortest maturities 
ould be interpretedas the result of the maturation pro
essus of the market.We have already noti
ed that the di�erent maturities of the NHO Heating Oil are perfe
tlyordered. It 
ould be very interesting to test over a longer period for the NHO Heating Oilif both the maturation of the market and the add of longer maturities tends to stabilizethe shortest ones.The di�erent behavior at long maturity (more than �fteen months) is surprising. It isunexpe
ted that the maturities of the NCL Crude are less ordered than the NHO HeatingOil, while the NCL Crude has a more important a
tivity. Di�erent arguments 
an begiven to explain this empiri
al observation:
• The is a problem with the temporal series extra
ted from DATASTREAM 45
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tor
CRUDE US-US

(a)

(b)

1M-2M-3M-4M-5M-7M-8M-9M-10M-11M-13M-15M-17M-18M

6M 12M 14M

16M

1M-2M-3M-4M-5M-7M-8M-10M-11M-13M-15M-14M

12M6M

9M

PSfrag repla
ementsFigure 4.2: Links between maturities up to �fteen maturities (a) and eighteen maturities(b).
• the long maturities are less reliable for the 
rude oil rather than the heating oil(whi
h would be a surprise). We will have to 
he
k in our next investigations thevolume of 
ontra
ts traded for the long maturities.
• the maturities form blo
ks that a
t in 
ooperation. There is a �rst blo
k betweenone to �fteen months (moreover the �fteen months' maturity is important for themarket). There is a se
ond blo
k of maturities between sixteen and twenty (in
ludingthe key maturity eighteen month). Finally, there is a last group made up of longmaturities with the parti
ular twenty-four months' maturity astonishing lo
alizedat the periphery of the tree.46



4.2. Spatial integration of energy markets
CRUDE US-US
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-36M-48M-60M
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Figure 4.3: Links between maturities up to sixty months.4.2 Spatial integration of energy marketsWe study in this se
tion the spatial aspe
t of the integration of the three futures 
ontra
tson 
rude oil and the two futures 
ontra
ts on petroleum produ
ts between 21/04/06 and07/29/09.In order to give more insight on the empiri
al relationship linking the market, we realizedseveral tests on di�erent maturities, from one to three months, six months and twelvemonths.
4.2.1 Maturities 1, 2 and 3 monthsThe �gure 4.4 represents the link between the markets in the minimal spanning tree. Forthe maturity one to three months, the topology of the tree is the un
hanged and the47
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tor
NCL     LTC     LLC     LHO     NHO

Figure 4.4: Links between the �ve energy markets NCL, LLC, LTC, NHO, LHO at ma-turity one month.
di�erent qualities are well separated.The two 
ommodities NCL and LTC are naturally 
onne
ted be
ause it is the same qual-ity but traded in di�erent pla
e. This �rst link is a pure geographi
al 
onne
tion.Then, there is a 
onne
tion between LTC and LLC based on the quality. The two 
om-modities are traded at the same pla
e (London), but there is an Ameri
an 
rude oil andan European 
rude oil.The next link is an upstream-downstream relation, in term of industrial pro
ess, with the
rude oil traded in London as input and the heating oil traded in London as output.The last edge in the graph is again a purely spatial link between the two heating oilLHO and NHO. The latter 
onne
tion is surprising while one 
ould imagine a preferredlink between the Ameri
an 
rude oil NCL and the Ameri
an heating oil NHO. A possibleexplanation is the presen
e of noise for the short maturities pri
es.Let us noti
e that while the topology of the trees does not 
hange between one and threemonths but the length of the tree de
reases with the maturity.48



4.2. Spatial integration of energy markets
NCL     LTC     LLC

NHO     LHO

Figure 4.5: Links between the �ve markets NCL, LLC, LTC, NHO, LHO at maturity sixmonths.4.2.2 Maturity 6 monthsThe links between the �ve markets at a maturity six months are given on the �gure 4.5.While the topology remained un
hanged for the three �rst maturities, at six months thetree is no more linear and a node with a 
onne
tivity equal to three appears. The most
onne
ted market is the LTC Crude. The latter a
ts as pivot in the system and is betweenNCL and LLC in term of quality and trading pla
e. Moreover, the LTC 
onne
ts the twoheating oil, �rst the LHO traded at the same pla
e and then the NHO.4.2.3 Maturity 12 months
NCL     LTC     LLC

NHO     LHO

Figure 4.6: Links between the �ve markets NCL, LLC, LTC, NHO, LHO at maturitytwelve months. 49



Chapter 4. Networks analysis of the Energy se
torThe relations between the pri
es at the maturity twelve months are represented on the�gure 4.6. The topology of the networks is again modi�ed. The pivot, whi
h allows tomove from the 
rude oil to the heating oil is no more the Ameri
an 
rude oil negotiatedin London but the Ameri
an 
rude oil traded in United States. Furthermore, the NHO isbefore the LHO. As the NCL is the most important market, it is relevant that the latterplays the role of the pivot when long maturities are 
onsidered. On the other hand, itis also interesting to noti
e that the distan
e between the NHO and the LHO is smallerthan the distan
e between the LLC and LHO. We 
an have a intuition, further tests arene
essary to 
on
lude, that the links between �nan
ial markets have the upper hand overthe pri
es behavior of the same 
ommodity but traded in di�erent pla
es. The �nan
ialmarkets, easily arbitrable 
ould have stronger links rather than the upstream/downstreamindustrial link.We 
an summarize all the results by plotting the path length of ea
h minimum spanningtree as a fun
tion of the maturity. The �gure 4.7 shows that the total length of theminimum spanning tree is de
reasing fun
tion the maturity. The latter result implies thatthe edges of the graph be
ome shorter. We have also 
ompute the average 
orrelation
〈Cij〉i∼j , where 〈...〉i∼j denotes the average over the edges of the graph. 〈Cij〉i∼j in
reaseswith the maturity and tends to a value 
lose to 1. We 
an highlight that the value ofthe average 
orrelation is high be
ause we are 
onsidered edges of the minimum spanningtree, and then the most 
orrelated markets. But the relevant point is that the 
losestmarkets be
ome more and more 
orrelated at long maturity.
4.3 Con
lusionIn this 
hapter, we have estimated and quanti�ed, through the s
ope of the minimumspanning tree, the spatial integration of the �ve most important energy markets. Ourresults are full of promise and we are 
on�dent to extra
t relevant e
onomi
 information50



4.3. Con
lusion

0 4 8 12

M
0,8

1,2

1,6

0 4 8 12
0,8

1,2

1,6 path length
<C

ij
>

i~j

Figure 4.7: Path length (bla
k line) and average 
orrelation (dotted line) as a fun
tion ofthe maturity M.from the 
omplex topology of 
ommodities networks.Our main result is that the links between markets, the edges of the minimum spanningtree, have an e
onomi
al interpretation that satis�es the intuition. We interpret thisresult as a positive test for the relevan
e of our method and the appli
ation to derivativemarkets.We also observed that the strength of the integration in
reases with the maturity. Thelatter result is original and has not been yet mentioned in other works. In parti
ular, theauthors of [29℄ saw the spatial links between oil markets but miss the information into thematurity dimension. The in
rease of the 
orrelation with the maturity is 
oherent withthe Samuelson e�e
t. As we are 
onsidering long maturity, the noise vanishes, and themarkets follow fundamental rules behavior.
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Chapter 5. Analysis of the systemi
 risk in the spatial, maturity and spatio-maturity dimensions5.3.4 Survival ratios . . . . . . . . . . . . . . . . . . . . . . . . . . . 715.3.5 Mean o

upation layer . . . . . . . . . . . . . . . . . . . . . . . 735.3.6 Pruning the trees . . . . . . . . . . . . . . . . . . . . . . . . . . 755.4 Con
lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78In this 
hapter we present the network analysis of fourteen derivatives markets indi�erent dimensions. In the �rst se
tion we brie�y remind the prin
ipal tools used in thenetworks analysis. In order to study the integration of derivative markets, we rely onthe graph-theory. Among the di�erent tools provided by this method, we sele
ted thoseallowing us to analyze market integration using a three-dimensional approa
h. We �rstde
ided to represent our pri
es system by studying the 
orrelation of pri
e returns. Havingtransformed these 
orrelations into distan
es, we were able to draw a fully 
onne
ted graphof the pri
es system, where the nodes of the graph represent the time series of futurespri
es. In order to �lter the information 
ontained in the graph, we rely on spe
i�
 graphs:minimum spanning trees (MST). The method used for the identi�
ation of the MST ispresented in the �rst part of this 
hapter. We then study the topology of the trees (se
ondse
tion) and their dynami
 behavior (third se
tion).5.1 Reminder on minimum spanning treesThe �rst step towards the analysis of market integration was in our 
ase the 
omputationof the syn
hronous 
orrelation 
oe�
ients of pri
e returns. In order to use the graphtheory, we needed to quantify the distan
e between the elements under examination.We thus extra
ted a metri
 distan
e from the 
orrelation matrix. We were then able to
onstru
t graphs. Lastly, we used a �ltering pro
edure in order to identify the MST [18℄.Su
h a tree 
an be de�ned as the one providing the best arrangement of the network'sdi�erent points.54



5.1. Reminder on minimum spanning trees5.1.1 The 
orrelation matrixIn order to measure the similarities in the syn
hronous time evolution of the futures
ontra
ts, we built a matrix of 
orrelation 
oe�
ients. The latter are de�ned as follows:
ρij (t) =

〈rirj〉 − 〈ri〉 〈rj〉
√

(

〈r2
i 〉 − 〈ri〉

2) (〈

r2
j

〉

− 〈rj〉
2)

, (5.1)When fo
using on the spatial dimension, i and j stand for the nearby futures pri
es ofpairs of assets, like 
rude oil or 
orn. In the absen
e of reliable spot data, we approximatethe spot pri
es with the nearest futures pri
es. When fo
using on the maturity dimension,they stand for pairs of delivery dates. They are a mix of the two when a three-dimensionalanalysis is performed. The daily logarithm pri
e di�erential stands for pri
e returns,with ri = (ln Fi(t)− ln Fi (t−∆t)) /∆t, where Fi(t) is the settlement pri
e of the futures
ontra
t at t. ∆t is the time window, and 〈.〉 denotes the statisti
al average performedother time, on the trading days of the study period.For a given time period and a given set of data, we thus 
omputed the matrix of N ×N
orrelation 
oe�
ients C, for all the pairs ij. C is symmetri
 with ρij when i = j. Thus,is 
hara
terized by N (N − 1) /2 
oe�
ients.5.1.2 From 
orrelations to distan
esIn order to use the graph-theory, we needed to introdu
e a metri
. The 
orrelation
oe�
ient ρij indeed 
annot be used as a distan
e dij between i and j be
ause it does notful�ll the three axioms that de�ne a metri
 [11℄:
• dij = 0 if and only if i = j,
• dij = dji

• dij ≤ dik + dkj 55



Chapter 5. Analysis of the systemi
 risk in the spatial, maturity and spatio-maturity dimensionsA metri
 dij 
an however be extra
ted from the 
orrelation 
oe�
ients through a nonlinear transformation. Su
h a metri
 is de�ned as follows:
dij =

√

(2 (1− ρij)). (5.2)A distan
e matrix D was thus extra
ted from the 
orrelation matrix C a

ording toEquation (5.2). C and D are both N ×N dimensional. Whereas the 
oe�
ients ρij 
anbe positive for 
orrelated returns or negative for anti-
orrelated returns, the distan
e dijrepresenting the distan
e between pri
e returns is always positive.5.1.3 From full 
onne
ted graphs to Minimum Spanning Trees(MST)A graph gives a representation of pairwise relationships within a 
olle
tion of dis
reteentities. A simple 
onne
ted graph represents all the possible 
onne
tions between Npoints under examination with N − 1 links (edges). Ea
h point of the graph 
onstitutesa node (vertex). The graph 
an be weighted in order to represent the di�erent intensitiesof the links and / or nodes. Su
h weights 
an represent the distan
es between the nodes.In order to understand the organizing prin
iples of a system through its representation asa graph, it needs to be spanned, i.e. all its nodes need to be traversed. However, thereare a lot of paths spanning a graph. For a weighted graph, the minimum spanning tree(MST) is the one spanning all the nodes of the graph, without loops. It has less weightthan any other tree. Its links are a subset of those of the initial graph.Through a �ltering pro
edure (the information spa
e is redu
ed from N(N − 1)/2 to
N − 1), the MST reveals the most relevant 
onne
tions of ea
h element of the system. Inour study, they provide for the shortest path linking all nodes. Thus, they 
an be seenas a way of revealing the underlying me
hanisms of systemi
 risk: the minimal spanningtree is indeed the easiest path for the transmission of a pri
es sho
k.56



5.2. Topology of the Minimum Spanning Trees: empiri
al results5.2 Topology of the Minimum Spanning Trees: empir-i
al resultsThe �rst information given by a minimum spanning tree is the kind of arrangement foundbetween the verti
es. Therefore, the �rst step in studying MST lies in their visualization.We then use the allometri
 
oe�
ients method in order to determine whether a MST istotally organized, totally random, or is situated somewhere between these two extremetopologies. In this part of the study, we 
onsider the whole time period as a single windowand thus perform a stati
 analysis.5.2.1 Visualization and des
ription of the MSTThe visualization of the trees is a very important step, as it addresses the meaningfulnessof the taxonomy that emerges from the system. Before going further, let us make tworemarks: �rst, we are 
onsidering links between markets and/or delivery dates belongingto the MST. Thus, if a relationship between two markets or maturities does not appear inthe tree, this does not mean that this relation does not exist. It just does not 
orrespondto a minimal distan
e. Se
ond, our results naturally depend on the nature and numberof markets 
hosen for the study.In what follows, we will use the term �se
tor� in order to des
ribe the grouping of under-lying assets, whereas we will retain the term �
luster� in order to des
ribe, for a spe
i�
market, the grouping of delivery dates in the maturity dimension.Figure (5.1) presents the MST obtained for the spatial and for the maturity dimensions.As far as the spatial dimension is 
on
erned, the MST looks like a star. In Figure (5.1)-athe three se
tors 
an be identi�ed: energy is at the bottom. It gathers Ameri
an as wellas European markets and is situated between agri
ultural (on the left) and �nan
ial assets(mainly on the right). Moreover, the most 
onne
ted node in the graph is European 
rudeoil (LLC ), whi
h makes it the best 
andidate for the transmission of pri
e �u
tuations in57



Chapter 5. Analysis of the systemi
 risk in the spatial, maturity and spatio-maturity dimensions
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Figure 5.1: Stati
 minimum spanning trees. Left panel: MST for the spatial dimension,built from the 
orrelation 
oe�
ients of pri
es returns, 30/04/01-01/08/09. Right panel:MST on the maturity dimension, built from the 
orrelation 
oe�
ients of the Brent 
rudeoil LLC, 01/04/2000-06/11/09.the tree (a
tually, the same 
ould have been said for Ameri
an 
rude oil (NLC ), as thedistan
e between these produ
ts is very short). Last but not least, the energy se
tor seemsthe most integrated, as the distan
es between the nodes are short. The link between theenergy and agri
ultural produ
ts passes through soy oil (CBO). This is interesting, asthe latter 
an be used for fuel. The link between 
ommodities and �nan
ial assets passesthrough gold (NGC ), whi
h 
an be seen as a 
ommodity but also as a reserve of value.The only surprise 
omes from the S&P500 (ISM ), whi
h is more 
orrelated to soy oil(CBO) than to other �nan
ial assets.58



5.2. Topology of the Minimum Spanning Trees: empiri
al resultsSu
h an organization leads to spe
i�
 
on
lusions regarding systemi
 risk. Let us supposethat a pri
es sho
k rea
hes interest rates (IED). The star-like organization of the tree doesnot enable us to determine whether this sho
k 
omes from the energy or the agri
ulturalse
tors. Things are totally di�erent in the maturity dimension.In this 
ase, it was not possible to give an illustration for ea
h tree, as the databasegathers 14 futures 
ontra
ts. We thus retained a representative tree, that of Brent 
rude(LLC ). The latter is illustrated by Figure (5.1)-b. The MST is linear and the maturitiesare regularly ordered from the �rst to the last delivery dates.The analysis on the maturity dimension gives rise to three remarks. Firstly, this lineartopology re�e
ts the presen
e of the Samuelson e�e
t. In derivative markets, the move-ments in the pri
es of the prompt 
ontra
ts are larger than the other ones. This results ina de
reasing pattern of volatilities along the pri
es 
urve. Se
ondly, this type of organiza-tion impa
ts the possible transmission of pri
es sho
ks. The most likely path for a sho
kis indeed unique and passes through ea
h maturity, one after the other. Thirdly, the shortpart of the 
urves are generally less 
orrelated with the other parts. This phenomenon
an result from pri
es sho
ks emerging in the physi
al market with the most nearby pri
ebeing the most a�e
ted; it 
ould also re�e
t noises introdu
ed on the �rst maturity byinvestors in the derivative market.Let us now turn to the three-dimensional analysis. Figure (5.2) represents the 3-D stati
MST. Its shape brings to mind that observed in the spatial dimension. However, it isenhan
ed by the presen
e of the di�erent maturities available for ea
h market. The latterare 
learly linearly organized. As previously, the tree shows a 
lear separation between these
tors. Three energy 
ontra
ts, Ameri
an 
rude oil (NCL), European 
rude oil (LLC )and Ameri
an heating oil (NHO) are found at the 
enter of the graph. They are the three
losest nodes of the graph. Moreover, the agri
ultural se
tor is no longer linked to gold.It is now dire
tly linked to Ameri
an 
rude oil (NCL).It would have been interesting to know whi
h maturities 
onne
t two markets or se
-59
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Figure 5.2: Stati
 minimum spanning tree for the three-dimensional analysis, 27/06/2000-12/08/2009. The di�erent futures 
ontra
ts are represented by the following symbols:empty 
ir
le: IED, point: ISM, o
tagon: LNG, ellipse: LLE, box: NNG, hexagon: LLC,triangle: NCL, house: NHO, diamond: NGC, inverted triangle: CBO, triple o
tagon:CEU, double 
ir
le: CS, double o
tagon: CW, egg: CC. For a given futures 
ontra
t, allmaturities are represented with the same symbol. The distan
e between the nodes is setto unity.60



5.2. Topology of the Minimum Spanning Trees: empiri
al results
Allometric coefficient

Name Static coefficient Dynamical coefficient

IED 1,927± 0,056 1,913± 0,011

LNG 1,874± 0,002 1,886± 0,059

LLE 1,88± 0,003 1,943± 0,02

NNG 1,75± 0,037 1,774± 0,018

LLC 1,889± 0,003 1,904± 0,095

NCL 1,994± 0,045 1,906± 0,013

NGC 1,732± 0,092 1,908± 0,013

CBO 1,889± 0,003 1,886± 0,032

CS 1,848± 0,095 1,822± 0,095

CW 1,864± 0,13 1,761± 0,125

CC 1,88± 0,003 1,834± 0,024

Spatial 1,493± 0,056 1,621± 0,024

3-D 1,757± 0,023 1,85± 0,009
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Figure 5.3: Allometri
 properties of the trees. Left panel: stati
 and dynami
al expo-nents for ea
h futures 
ontra
t (maturity dimension), as well as for the spatial and 3-Danalyses. Right panel: 3-D dynami
al allometri
 
oe�
ients in log-log s
ale. The dashedline 
orresponds to the best �t with an exponent equal to 1.85.tors. E
onomi
 intuition suggests two kinds of 
onne
tions: they 
ould appear on theshortest or on the longest part of the 
urves. In the �rst 
ase, the pri
e's system wouldbe essentially driven by underlying assets; in the se
ond one, it would be dominated byderivative markets. However, a 
loser analysis of the 3-D trees does not provide eviden
eof either kind of expe
ted organization. Moreover, the analysis of the tree at di�erentperiods does not lead to the 
on
lusion that there is something like a pattern in the way
onne
tions o

ur. Further investigations are thus ne
essary in order to study the linksbetween markets and se
tors more pre
isely. We o�er an initial response to this problemat the end of this se
tion.5.2.2 Allometri
 properties of the MSTStar-like trees are symptomati
 of a random organization, whereas 
hain-like trees reveala strong stru
ture. The 
omputation of the allometri
 
oe�
ients of the MST provides a61



Chapter 5. Analysis of the systemi
 risk in the spatial, maturity and spatio-maturity dimensionsmeans of quantifying the degree of randomness in the tree.The �rst model of the allometri
 s
aling on a spanning tree was developed by[1℄. The �rst step of the pro
edure 
onsists in initializing ea
h node of the tree with thevalue 1. Then the root or 
entral vertex of the tree must be identi�ed. In what follows,the root is de�ned as the node having the highest number of links atta
hed to it. Startingfrom this root, the method 
onsists in assigning two 
oe�
ients Ai and Bi to ea
h node
i of the tree, where:

Ai =
∑

j

Aj + 1 and Bi =
∑

j

Bj + Ai, (5.3)
j stands for all the nodes 
onne
ted to i in the MST. The allometri
 s
aling relation isde�ned as the relationship between Ai and Bi:

B ∼ Aη, (5.4)
η is the allometri
 exponent. It represents the degree or randomness of the tree and standsbetween two extreme values: 1+ for star-like trees and 2− for 
hain-like trees.Figure (5.3) summarizes the allometri
 properties of the MST for ea
h dimension. Theleft panel reprodu
es the di�erent exponents and gives the error resulting from a non-linear regression. Figure (5.3) gives an illustration of the allometri
 
oe�
ients in 3-D.The dashed line 
orresponds to the best �t with an exponent equal to 1.85. The �gureshows that the 
oe�
ients are well des
ribed by the power law with an exponent.As far as the spatial dimension is 
on
erned, the exponents indi
ate that even if Figure(5.1) seems to show a star-like organization, the shape of the MST is rather 
omplex andstands exa
tly between the two asymptoti
 topologies. There is an ordering of the tree,whi
h is well illustrated by the agri
ultural se
tor, whi
h forms a regular bran
h.Within the maturity dimension, the 
oe�
ients tend towards their asymptoti
 value η =

2−. They are however a bit smaller than 2, due to �nite size e�e
ts (there is a �nitenumber of maturities). Su
h a result is rather intuitive but nevertheless interesting:62



5.3. Dynami
al studies of the systemsarbitrage operations on the futures 
ontra
ts related to the same underlying asset areeasy and rapidly undertaken, resulting in a perfe
t ordering of the maturity dates.Even if the topology of the spatial and 3-D trees seems similar, they are quantitativelydi�erent. The allometri
 exponent for the three-dimensional is higher: the best �t fromour data gives an exponent 
lose to 1.757, whi
h must be 
ompared to the value of 1.493for the spatial 
ase. Thus, the topology of our system, in 3-D, is rather 
omplex. It is theresult of two driving for
es: the star-like organization indu
ed by the spatial dimensionand the 
hain-like organization arising from the maturity dimension.5.3 Dynami
al studies of the systemsBe
ause they are based on 
orrelation 
oe�
ients, our Minimum Spanning Trees areintrinsi
ally time dependent. Therefore, its is ne
essary to study the time dependentproperties of the graphs. On the basis of the entire graph, �rstly we examined the dy-nami
al properties of the 
orrelation 
oe�
ients, as well as the node's strength, whi
hprovides information on how far a given node is 
orrelated to the other nodes. In order tostudy the robustness of the topology of the MST, we then 
omputed the graph's length,whi
h reveals the state of the system at a spe
i�
 time. Lastly, survival ratios indi
atehow the topology of the trees evolves over time. In what follows, we retained a rollingtime window with a size of ∆T = 480 
onse
utive trading days.5.3.1 Correlation 
oe�
ientsIn order to examine the time evolution of our system, we investigated the mean 
orre-lations of the returns and their varian
es ([29℄). The mean 
orrelation CT (t) for the
orrelation 
oe�
ient ρT
ij in a time window [t−∆T, t] 
an be de�ned as follows:

CT (t) =
2

N (N − 1)

∑

i<j

ρT
ij (t) , (5.5)63
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ementsFigure 5.4: Correlation 
oe�
ients in the spatial dimension. Figure (a): Mean of the
orrelation 
oe�
ients; Figure (b): Varian
e of the 
orrelation 
oe�
ients.The varian
e σ2
C (t) of the mean 
orrelation is given by:

σ2
C (t) =

2

N (N − 1)

∑

i<j

(

ρT
ij (t)− CT (t)

)2
. (5.6)Figure (5.4) represents the mean 
orrelation and its varian
e on the spatial dimension. Itshows that the mean 
orrelation of the pri
es system in
reases over time, espe
ially after

2007. The varian
e exhibits a similar trend. Moreover, it rea
hes its maximum on the
09/19/2008, four days after the Lehman Brothers' bankrupt
y.We then examine the maturity dimension. Firstly, we fo
us on the statisti
al propertiesof the 
orrelation 
oe�
ients of two futures 
ontra
ts, represented by Figure (5.5). Theyare very di�erent for these 
ontra
ts. The maturities of Brent 
rude oil (LLC ) are moreand more integrated over time: at the end of the period, the mean 
orrelation is 
lose to 1.Su
h a trend does not appear for the eurodollar 
ontra
t (IED). This is 
onsistent with theperipheral position of the interest rate market in the 
orrelation lands
ape. As far as 
rude64
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Figure 5.5: Correlation 
oe�
ients in the maturity dimension for the eurodollar IED(dashed lines) and the Brent 
rude oil LLC (bla
k lines). Figure (a): Mean of the 
orre-lation 
oe�
ients; Figure (b): Varian
e of the 
orrelation 
oe�
ients.oil is 
on
erned, the level of integration be
omes so strong that the varian
e de
reases andexhibits an anti 
orrelation with the mean 
orrelation. The result was totally di�erent inthe spatial 
ase: the mean 
orrelation and its varian
e where 
orrelated ([22℄) also observesu
h a positive 
orrelation during pri
es growth and �nan
ial 
rises).Figure (5.7) summarizes the statisti
al properties of the mean 
orrelations and varian
esfor the 14 markets, on the maturity dimension. It 
on�rms that, for almost every 
ontra
t,the mean 
orrelation is very high and anti 
orrelated with the mean varian
e. The twonatural gases however exhibit more spe
i�
 �gures. Their 
orrelation level is quite low,when 
ompared with other markets, espe
ially for London Natural Gas. Meanwhile, theirmean varian
e is high.Merging spa
e and maturity, in three dimensions, we also observe an important rise inthe mean 
orrelation and varian
e, as shown in Figures (5.6)-a and (5.6)-b. Moreover,these values are 
orrelated. 65
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Figure 5.6: Correlation 
oe�
ients in three dimensions. Figure (a): Mean of the 
orrela-tion 
oe�
ients. Figure (b): Varian
e of the 
orrelation 
oe�
ients.
5.3.2 Node's strengthThe node's strength, 
al
ulated for ea
h node i, indi
ates the 
loseness of one node i tothe others. It is de�ned as follows:

Si =
∑

i6=j

1

dij
. (5.7)In our 
ase, the node's strength provides information on the intensity of the 
orrelationslinking a given node to the others. When Si is high, the node is 
lose to the others.Figure (5.8) represents the time evolution of the node's strength for ea
h node within thefully 
onne
ted graph, in the spatial dimension. The �gure has been separated into fourpanels: the energy se
tor is at the top, with Ameri
an produ
ts on the left and Europeanprodu
ts on the right, the agri
ultural se
tor is at the bottom left and �nan
ial assets are66
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Figure 5.7: Correlation 
oe�
ients in the maturity dimension. Mean 
orrelation 
oe�-
ients and their varian
es for all markets.

67



Chapter 5. Analysis of the systemi
 risk in the spatial, maturity and spatio-maturity dimensions

17-01-2004 09-07-2009

t10

12

14

16

S
NNG
NCL
NHO

(a)

17-01-2004 09-07-2009

t10

12

14

16

S
LNG
LLE
LLC

(b)

17-01-2004 09-07-2009

t10

12

14

S
CBO
CS
CW
CC

(c)

17-01-2004 09-07-2009

t
9

10

11

12

S
IED
ISM
NGC
CEU

(d)

Figure 5.8: Nodes strength of the markets in the spatial dimension. Figure (a): Amer-i
an energy produ
ts. Figure (b): European energy produ
ts. Figure (
): Agri
ulturalprodu
ts. Figure (d): Finan
ial assets.at the bottom right.Figure 5.8) prompts the following remarks: at the end of the period, out of all the assetsstudied, the two 
rude oils and Ameri
an heating oil show the greatest node's strength.These are followed by soy oil (CBO), other agri
ultural assets, the S&P500 
ontra
t68
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Figure 5.9: Node strength in the maturity dimension, for three maturities. Figure (a):Eurodollar IED. Figure (b): Brent LLC (b).(ISM ), gold (NGC ), the euro dollar ex
hange rate (CEU ) and European gas oil (LLE ).The more distant nodes are those representing the eurodollar (IED) and natural gases(NNG and LNG).When the time evolution of this measure is 
on
erned, the se
tor shows di�erent patterns:the integration movement, 
hara
terized by an in
rease in the node's strength, emergesearlier for the energy se
tor than for the agri
ultural se
tor. However, it de
reases forenergy at the end of the period, whi
h is not the 
ase for agri
ultural produ
ts. Moreover,the agri
ultural se
tor behaves very homogeneously, with a high in
rease after O
tober
2005. Last but not least, most of the produ
ts exhibit a strong in
rease, ex
ept for naturalgases and interest rate 
ontra
ts. Thus, whereas the 
ore of the tree be
omes more andmore integrated, the peripheral assets do not follow this movement.As far as the maturity dimension is 
on
erned, it was not possible to represent the node'sstrength for all futures 
ontra
ts. Moreover, the 
omputation of mean node's strength, onall maturities for ea
h 
ontra
t, would lead to the same kind of results as those provided by69



Chapter 5. Analysis of the systemi
 risk in the spatial, maturity and spatio-maturity dimensionsFigure (5.7). Therefore, we again retained, the Brent 
rude oil (LLC ) and the eurodollar
ontra
t (IED) examples. We then 
hose three delivery dates for these 
ontra
ts, asshown in Figures (5.9)-a and (5.9)-b. The �rst maturity is drawn with a �ne line, thelast maturity with a wide line and the intermediary maturity with a medium width line.All the observed nodes' strength grow over time, ex
ept for the �rst eurodollar (IED)maturity. Moreover, in ea
h 
ase, the strongest node is the one whi
h 
orresponds to theintermediary maturity, whereas the weakest one represents the �rst maturity.5.3.3 Normalized tree's lengthLet us now examine some of the properties of the �ltered information. The normalizedtree's length 
an be de�ned as the sum of the lengths of the edges belonging to the MST:
L (t) =

1

N − 1

∑

(i,j)∈MST

dij, (5.8)where t denotes the date of the 
onstru
tion of the tree and N − 1 is the number of edgesin the MST. The length of a tree is longer as the distan
es in
rease, and 
onsequentlywhen 
orrelations are low. Thus, the more the length shortens, the more integrated thesystem is.Figure (5.10)-a represents the dynami
 behavior of the normalized length of the MST inits spatial dimension. The general pattern is that the length de
reases, whi
h re�e
ts theintegration of the system. This information 
on�rms what was observed on the basis ofthe node's strengths. However we must remember that we are now analyzing a �lterednetwork. Thus, what we see on Figure (5.10)-a is that the most e�
ient transmissionpath for pri
e �u
tuations be
omes shorter as times goes on. From a systemi
 point ofview, this means that a pri
es sho
k will be less and less absorbed as it passes throughthe tree. A more indepth examination of the graph also shows a very important de
reasebetween O
tober 2006 and O
tober 2008, as well as signi�
ant �u
tuations in September70
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Figure 5.10: Spatial dimension. Figure (a): Normalized tree's length. Figure (b): Survivalratios.and O
tober 2008. We leave the analysis of su
h events for future studies.In the maturity dimension, as integration in
reases, the normalized tree's length alsodiminishes. This phenomenon is illustrated by Figures (5.11)-a and -b, whi
h representthe evolutions re
orded for the eurodollar 
ontra
t (IED) and for Brent 
rude (LLC ).As far as the interest rate 
ontra
t is 
on
erned, the tree's length �rst in
reases, then inmid-2001 it drops sharply and remains fairly stable after that date. For 
rude oil, thede
rease is 
onstant and steady , ex
ept for a few surges.Figure (5.12) summarizes the main results 
on
erning the tree's length for ea
h futures
ontra
t. However, it is not easy to 
ompare the tree's lengths of futures 
ontra
ts whenthe latter have a di�erent number of delivery dates.5.3.4 Survival ratiosThe robustness of the MST over time is examined by 
omputing the single step survivalratio of the links, SR. This quantity refers to the fra
tion of edges in the MST, that71



Chapter 5. Analysis of the systemi
 risk in the spatial, maturity and spatio-maturity dimensionssurvives between two 
onse
utive trading days ([23℄):
SR (t) =

1

N − 1
|E (t) ∩ E (t− 1)| . (5.9)In this equation, E(t) refers to the set of the tree's edges at date t, ∩ is the interse
tionoperator, and | . | gives the number of elements 
ontained in the set. Under normal
ir
umstan
es, the topology of the trees, between two dates, should be very stable, atleast when of the window lengths parameter ∆T presents small values. While some�u
tuations of the survival ratios might be due to real 
hanges in the behavior of thesystem, it is worth noting that others may simply be due to noise. In this study, wemostly examine the presen
e of trends in the way these ratios evolve.Figure (5.10)-b represents their evolution in the spatial dimension. Most of the time,this measure remains 
onstant, with a value greater than 0.9. Thus, the topology of thetree, in the spatial dimension, is very stable. The shape of the most e�
ient path for thetransmission of pri
es sho
ks does not 
hange mu
h over time. However, it is possible toidentify four events where 1/4 of the edges has been shu�ed. Su
h a result also 
alls forfurther investigation, as a reorganization of the system 
an be interpreted as the result ofa pri
es sho
k.In the maturity dimension, Figures (5.11)-a and -b exhibit di�erent patterns for 
rude oil(LLC ) and interest rates (IED). As far as 
rude oil is 
on
erned, while the trees shrinkin the metri
 sense, the organization of the MST is very stable. Few events seem todestabilize the edges of the trees, ex
ept for the very end of the period, i.e. from the endof 2008. Again, what happens on the eurodollar is totally di�erent. In mid-2001, aroundthe time of the internet 
risis, when the length of the tree in
reases, the tree also be
omesmore spa
ed out. This sparseness 
omes with an important amount of reorganizations,and �u
tuations in the survival ratio are greater as the length in
reases.A more 
omplete view of what happens in the maturity dimension is o�ered by Figure(5.12). It exhibits the high level of stability of the trees in the way delivery dates are72
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Figure 5.11: Maturity dimension, normalized tree's length and survival ratios for theeurodollar IED (a) and the Brent LLC (b)organized.Lastly, as far as the 3-D trees are 
on
erned, the survival ratios do not give any furtherinformation than in the spatial and maturity dimension. However, a more spe
i�
 analysisof these trees, based on a pruning method, provides some interesting results.5.3.5 Mean o

upation layerWe then present the time evolution of the mean o

upation layer. This measure 
hara
-terizes the topologi
al 
ompa
tness of the tree whi
h usually shrinks, topologi
ally, during
rashes. This e�e
t 
ould be measured as a de
rease of L(t). The time evolution for threeintegration are presented on Figure (5.13). For the spatial integration (dashed line ofFigure (5.13)-a, and the spatio-maturity integration (bla
k line of Figure (5.13)-a. Asobserved by the authors of [29℄, there are �u
tuations but no 
onstant trends for thevalue. For the maturity integration, represented by Figure (5.13)-b, we 
an observe thatthe eurodollarIED be
omes sparser with a sudden jump, while the Brent 
rude oil LLC73
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Figure 5.12: Table summarizing the mean normalized tree's length and the mean survivalratio of the minimum spanning trees in the maturity dimension, for all markets.
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ementsFigure 5.13: Mean o

upation layer. Figure (a): Three-dimensional integration (bla
kline) and spatial integration (dashed line); Figure (b): Maturity integration for the eu-rodollar IED (bla
k line) and the Brent 
rude oil LLC (dashed line).is 
onstant in time with an important �u
tuation in the end of the period.5.3.6 Pruning the treesAs far as the stability of the trees is 
on
erned, espe
ially in 3-D, when fo
using on thewhole system, it is interesting to distinguish between reorganizations o

urring in a spe-
i�
 market, between di�erent delivery dates of the same 
ontra
t, and reorganizationthat 
hanges the nature of the links between two markets or even between two se
tors.Equation (5.9) however gives the same weight to every kind of reorganization, whatever itsnature. The trouble is, a 
hange in intra-maturity links does not have the same meaning,from an e
onomi
 point of view, as a movement a�e
ting the relationship between twomarkets or se
tors. As we are interested, at least initially, in strong events a�e
ting themarkets, inter markets and inter se
tors reorganizations seem more relevant. Thus, in or-der to distinguish between these 
ategories of displa
ements, we de
ided to prune the 3-D75
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Figure 5.14: Pruned minimum spanning trees of the events 09/02/2004 (left panel) and16/09/2008 (right panel).trees, i.e. to only 
onsider the links between markets, whatever the maturity 
onsidered.This does not mean, however, that maturity is removed from the analysis. It signi�esthat with pruned trees, the information on the spe
i�
 maturity that is responsible forthe 
onnexion between markets is no longer relevant. Su
h trees enable us to 
omputethe survival ratios on the sole basis of market links.Figure (5.15)-a displays the survival ratio of the redu
ed trees. As observed previously,76



5.3. Dynami
al studies of the systemsthe ratio is fairly stable. However, several events 
ause a signi�
ant rearrangement of thetree. This is the 
ase, for example, for two spe
i�
 dates, namely 02/09/04 and 09/16/08.A brief fo
us on these two dates shows that the tree is totally rearranged. In 2004, thetrees be
ome highly linear, the �nan
ial assets se
tor is at the 
enter of the graph, and
ommodities appear mainly at the periphery of the system. Conversely, in 2008, the treehas a typi
al star-like shape showing an organization based on the di�erent se
tors stud-ied.Another interesting 
hara
teristi
 of the pruned survival ratios is that they provide infor-mation on the length of periods of market stability. Over the entire period of our study,we measured the length of time τ 
orresponding to a stability period, and we 
omputedthe o

urren
es N (τ) of su
h periods. Figure (5.15)-b displays our results. It shows that
N (τ) de
reases strongly with τ , with a possible power law behavior, as shown in thelog-log s
ale inset of Figure (5.15)-b. There are few stable periods that last a long time,and mu
h more stable periods that last a short time. We need to re�ne the former result,but if su
h a power law is 
on�rmed, it will mean that the markets 
an have stable periodsof any length.Finally, another interesting result lies in the analysis of those links whi
h are mostfrequently responsible for the reorganization of the trees. With fourteen markets, thereare ninety one links in our system. Some of them - twenty six - never appear. Amongthe remaining sixty- �ve trees, some appear very frequently and, on the 
ontrary, othersdisplay very few o

urren
es. Figure (5.16) reprodu
es these two 
ategories of links andthe frequen
y in whi
h they appear in the MST. The most robust links have a frequen
yequal to one, whi
h means that the links are always present. They mainly 
orrespond tothe agri
ultural se
tor, with the following pairs: wheat and 
orn (CW -CC ), soy beansand 
orn (CS -CC ), soy oil and soy beans (CBO-CS ). The link between gold and theeuro-dollar ex
hange rate (NGC -CEU) is also always present. As expe
ted, the relation-ships between the two 
rude oils (NCL-LLC ) are very stable, with a frequen
y greater77
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Figure 5.15: Properties of pruned trees. Figure (a): Survival ratio. Figure (b): Numberof o

urren
es of stable periods of length τ . Inset: same as Figure (b), but in log-logs
ale.than 0.9. The same is true for the links between the interest rates and the ex
hange rate(IED-CEU ), whi
h is also rather intuitive, from an e
onomi
 point of view, as interestrates are embedded in forward ex
hange rates. The other tail of the 
urve 
ontains tenlinks 
hara
terized by a frequen
y lower than 0.01. The lowest values 
orrespond to theasso
iation of interest rates and gas oil and that of interest rates and gold.
5.4 Con
lusionIn this 
hapter, we study the question of systemi
 risk in energy derivative markets basedon two 
hoi
es. First we fo
us on market integration, as it 
an be seen as a ne
essary
ondition for the propagation of a pri
es sho
k. More spe
i�
ally, we fo
us on the simul-taneous 
orrelations of pri
e returns. Se
ondly, based on the fa
t that previous studiesmainly fo
used solely on the spatio-temporal dimension of integration, we introdu
e a78
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Figure 5.16: Frequen
y of links apparition in the pruned minimum spanning trees. Figure(a): frequen
y lower than 0,012. Figure (b): frequen
y greater than 0,25.maturity dimension analysis and we perform a three-dimensional analysis.The visualization of the MST �rst shows a star-like organization of the trees in the spatialdimension, whereas the maturity dimension is 
hara
terized by 
hain-like trees. These twotopologies merge in the three-dimensional analysis, but the star-like organization still dom-inates. The star-like organization reprodu
es the three di�erent se
tors studied: energy,agri
ulture and �nan
e, and the 
hain-like stru
ture re�e
ts the presen
e of a Samuelsone�e
t. These intuitive results are very important, as they are a key justi�
ation for theuse of our methodology.The Ameri
an and European 
rude oils are both found at the 
enter of the graph andensure the links with agri
ultural produ
ts and �nan
ial assets. Thus the �rst 
on
lusionof importan
e that we 
ome to is that 
rude oil is the best 
andidate for the transmission79
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 risk in the spatial, maturity and spatio-maturity dimensionsof pri
es sho
ks. If su
h a sho
k appears at the periphery of the graph, unless it is ab-sorbed qui
kly, it will ne
essarily pass through 
rude oil before spreading to other energyprodu
ts and se
tors. Moreover, a sho
k will have an impa
t on the whole system thatwill be all the greater the 
loser it is to the heart of the system.Another important 
on
lusion is that the level of integration is more important in thematurity dimension than in the spatial one. On
e again, this result is intuitive: arbitrageoperations are far easier with standardized futures 
ontra
ts written on the same under-lying asset than with produ
ts of di�erent natures su
h as 
orn bushels and interest rates.The analysis of how this level evolves over time shows that integration in
reases signi�-
antly on both the spatial and maturity dimensions. Su
h an in
rease 
an be observed onthe whole pri
es system. It is even more evident in the energy se
tor (with the ex
eptionof the Ameri
an and European natural gas markets) as well as in the agri
ultural se
tor.The latter is highly integrated at the end of our period. Lastly, as far as the �nan
ialse
tor is 
on
erned, no remarkable trend 
an be highlighted. Thus, as time goes on, theheart of the pri
e system be
omes stronger whereas where the peripheral assets are founddoes not 
hange signi�
antly.Last but not least, the dynami
 analysis also reveals, by using survival ratios, that thesystem is fairly stable. This is true, ex
ept for spe
i�
 events leading to important re
on-�gurations of the trees and requiring a spe
i�
 analysis. We leave these studies for futureanalyses.Su
h results have very important 
onsequen
es, for regulatory as well as for hedging anddiversi�
ation purposes. The move towards integration started some time ago and thereis probably no way to stop or refrain it. However, knowledge of its 
hara
teristi
s isimportant, as regulation authorities may a
t in order to prevent pri
es sho
ks from o

ur-ring, espe
ially in pla
es where their impa
t may be important. As far as diversi�
ationis 
on
erned, portfolio managers should probably fo
us on the less stable parts of thegraph. The links in the trees whi
h 
hange the most should be the best 
andidates for80



5.4. Con
lusiondiversi�
ation opportunities. Lastly, one important 
on
ern for hedging is the informa-tion 
onveyed by futures pri
es and its meaning. The in
reasing integration of derivativemarkets is probably not a problem for hedging purposes, unless a pri
es sho
k appearssomewhere in the system. In su
h a 
ase, the information related to the transmission pathof the sho
k is important, as pri
es might temporarily be
ome irrelevant.
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6
Building a minimal model

Contents6.1 The spirit if a minimal model . . . . . . . . . . . . . . . . . . . 836.2 A minimal model for 
olle
tive behavior and statisti
al physi
stoolbox . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 846.2.1 Ising Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 866.2.2 Mean �eld approximation . . . . . . . . . . . . . . . . . . . . . 896.3 Some 
on
lusions and general ideas about the Ising modeland the mean �eld approximation . . . . . . . . . . . . . . . . 92This 
hapter is devoted to a theoreti
al work fo
using on the way we 
ould build aminimal model. We �rst remind of the spirit of a minimal model and �nally attempt todes
ribe the behavior of linked 
ommodity derivatives, on the basis of physi
al tools.6.1 The spirit if a minimal modelFollowing a 
ommon strategy for physi
ists, we aim to build a model of 
ommodity pri
esbehavior whi
h gives a simpli�ed representation of their real dynami
. Su
h a 
onstru
tion83



Chapter 6. Building a minimal modelrelies on a balan
e between:
• the formulation of equations whi
h are simple enough to be solved, either analyti-
ally or at least numeri
ally
• remaining faithful to all the main features of the phenomena we want to studyOf 
ourse these two points are the 
ore of any modeling pro
ess. As far as we know,our investigations however are pretty original, and physi
ists who attempt ti build a newmodel in a new �eld of investigation tend to make very rough simpli�
ations. Most ofthe time they propose models with a very small number of parameters. The key of thismodeling is to retrieve most of the information through the redu
ed number of parametersand keeping in mind that some details are lost and not in the s
ope of the build minimalmodel. We must emphasize that knowing what kind of information is lost make ri
herthe understanding of the model and is helpful for further investigations and re�nements.6.2 A minimal model for 
olle
tive behavior and sta-tisti
al physi
s toolboxIn the pre
eding se
tions , we brie�y introdu
ed 
ertain words whi
h sound familiar forphysi
ists. These words are probably less obvious for s
ientists belonging to other 
om-munities. More pre
isely, we talked about phase transition, order parameter, 
olle
tivebehavior, universality, noise or temperature... All this terminology 
an be explained withrather simple 
on
epts or pi
tures. This is the aim of this se
tion. We will explain thesewords, either formally or, when possible, with simple illustrations. In the next paragraph,all these 
on
epts will be joined in a well de�ned 
ontext, namely a simple model exhibit-ing 
olle
tive behavior and phase transition.Let us start this pedagogi
al se
tion by introdu
ing what a physi
ists means with theexpression 
olle
tive behavior and what kind of tools or measures exist to dete
t them.84
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s toolbox
(a) (b)

Figure 6.1: Sket
h of three traje
tories in a swarming 
rowd (�gure (a)) in a moving
rowd (�gure (b)).We de�ne a 
olle
tive behavior as a spontaneous 
onsensus rea
hed by all (or a signi�antpart) of an assembly of homogeneous or heterogeneous individuals. For instan
e, one
an imagine a 
rowd made up of individuals (having di�erent ages, sex, so
ial 
lasses orpoliti
al opinions) walking around with no spe
i�
 dire
tion, whi
h suddenly moves inone dire
tion. How 
an this kind of movement emerge in the absen
e of a leader and/oran external stimulus? Su
h a 
olle
tive motion is all the more surprising if individualsinside the 
rowd only have a

ess to lo
al information. This a good pi
ture of a 
olle
tivemotion for a physi
ist. There is a large number of individuals, the available information islo
al and a global movement is spontaneous. Naturally, a global motion resulting from anexternal signal is also of interest but the questions addressed will be di�erent. Then weneed a value to dis
riminate if the 
rowd is moving or not. This is the role of the so-
alledorder parameter. The latter is a value that gives an information about the ma
ros
opi
state of the system. For instan
e if the 
rowd is moving, the order parameter is equal toone. Otherwise it is equal to zero. All the value between one and zero indi
ate the degree85



Chapter 6. Building a minimal modelof order in the 
rowd. Let us 
onsider the velo
ity ~ui (t) of the individual (labelled by i)at the time t. To make it more simple we take the modulus |ui (t)| = 1. The value of theorder parameter ϕ is de�ned by:
ϕ (t) = 〈ui (t)〉i , (6.1)where <>i denotes the average over all the population. ϕ belongs to the interval [0, 1].It takes the value 0 if the 
rowd does not move. 
onversely, if the assembly is moving inthe same dire
tion, it is equal to 1.Now we have introdu
ed some 
on
epts of phase transitions, we 
an 
olle
t them within asimple model. The so-
alled Ising model, whi
h des
ribes the spontaneous magnetizationin magneti
 material.6.2.1 Ising ModelIn this paragraph, we will present with all possible details a simple model des
ribing howa spontaneous magneti
 �eld 
an appear in a material. A magneti
 �eld results from a
olle
tive behavior of mi
ros
opi
 entities. Questions about magnetization is out of thes
ope of this report but the Ising model presents a great advantage: it provides a goodexplanation of what is a 
olle
tive behavior. Moreover, it gives some tool that proved tobe useful in the analysis of phase transition.The ferromagnetism is a very 
omplex phenomenon. Some materials, su
h as iron, 
obalt,ni
kel, for instan
e, are naturally magnetized. The existen
e of magnetization signi�esthat, at a mi
ros
opi
 s
ale ea
h ele
tron 
arries a physi
al quantity, the spin. The latteris more or less the same for all the ele
trons and 
reate a ma
ros
opi
 magnetization. Ata high temperature, the spin of ea
h ele
tron is di�erent. The magnetization vanishesand the material is said to be paramagneti
. Again, the transition from a ferromagneti
state to a paramagneti
 state is a very 
omplex phenomenon and we will see how we 
an86



6.2. A minimal model for 
olle
tive behavior and statisti
al physi
s toolboxfa
e su
h a 
omplexity. We �rst need simple enough equations to be solved analyti
allyor at least numeri
ally. Se
ondly, we have to 
onserve the main features we aim to study.While the equations must remain very simple, the phase transition must appear in thedevelopment of the model. We will not think any more about a spe
i�
 material, norabout ele
trons. We will repla
e it with a network of N nodes. The latter is 
hara
terizedby the presen
e of a spin ~Si at ea
h node i. Then we 
onsider the intera
tions betweenspins. Only spins that are neighbors on the network 
an intera
t together. The latter lustbe aligned to 
reate magnetization, the simplest intera
tion des
ribing the alignment isgiven by the hamitltonian H:
H = −J

∑

〈i,j〉

~Si
~Sj, (6.2)where J > 0 is a 
oupling 
onstant, ∑

〈i,j〉 is the sum over the nearest neighbors and themodulus ∣

∣

∣

~Si

∣

∣

∣
is set to one 1.Despite the simpli
ity of the Ising model, the latter is still too mu
h 
ompli
ated and
annot be solved. There is a need for an additional approximation in order to obtain aanalyti
al solution. Thus all the ve
tors ~Si are repla
ed by a number Si, whi
h 
an taketwo values: 1 and −1.Equation (6.2) thus be
omes:

H = −J
∑

〈i,j〉

SiSj, Si = ±±1 (6.3)and the partition fun
tion Z is :
Z =

∑

[Si]

e
J

kT

P

〈i,j〉 SiSj , (6.4)
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Chapter 6. Building a minimal modelwhere the sum is over all the possible 
on�gurations:
∑

[Si]

=
∑

S1=±1

∑

S2=±1

∑

SN=±1

. (6.5)Let us 
onsider a possible 
on�guration state α of the system. One 
an prove that theprobability of having the state α is :
Pα =

1

Z
e

1

kT
Eα, (6.6)where k is the Boltzmann fa
tor, T the temperature of the system and Eα the energy ofthe state α. The partition fun
tion is a normalization 
onstant whi
h ensures the sum ofprobabilities to be equal to one. The partition fun
tion 
ontains also how the probabilitiesare distributed between all the 
on�gurations.In a one dimensional spa
e, the N spins are on a line, the partition is Z = 2N

(

cosh (K)N−1
).The partition fun
tion 
overs the statisti
al properties of the system and allows for 
he
k-ing wether a phase transition 
an o

ur. Here the transition 
orresponds to a transitionfrom a zero magnetization state to a non-zero magnetization state.On
e Z has been 
al
ulated, we have a

ess to the two point 
orrelation fun
tion 〈SiSj〉.The 
orrelation fun
tion gives the possibility to appre
iate the in�uen
e of the value ofone spin Si on the other spins Sj. The in�uen
e of Si on Sj depends on the distan
e rijbetween i and j. The value 〈SiSj〉 is high when rij is small and de
reases as rij in
reases.The 
orrelation fun
tion is given by:

〈SiSj〉 = e−rij/ξ, (6.7)where ξ = a/ |ln (tanhJ/kT )| is the 
orrelation length, that gives the typi
al distan
eabove whi
h the information is lost.In this paragraph, we have presented the Ising model, a minimal model des
ribing mag-88



6.2. A minimal model for 
olle
tive behavior and statisti
al physi
s toolboxnetization in ferromagneti
 material. More pre
isely, we have seen how to model theintera
tion between spins. We have also extra
ted the partition fun
tion, that gives a
-
ess to all the available information. For instan
e, the 
orrelation fun
tion whi
h givesthe s
ale at whi
h a spin in�uen
es its neighbors. One 
an easily noti
e that a large valueof ξ implies large 
orrelations and thus is the signal of a 
olle
tive behavior.We have exposed the model in a one dimensional spa
e. However, for pra
ti
al reasonsthere is a need for higher dimensions. Unfortunately, despite all the simpli�
ations madeto obtain the Ising model, the latter remains not trivial. Ernst Ising solved the prob-lem in 1925. It was not until 1936 that Rudolf Peierls proved that the two-dimensionalIsing model has a phase transition. The 
riti
al temperature for the phase transition hasbeen obtained by Kramers and Wannier in 1941 and �nally a general solution for thetwo-dimensional 
ase has been found by Onsager in 1944. Eighty years later, no one hasfound an analyti
al solution in three dimensions. To deal with a high dimensional system,or a more 
ompli
ated model, additional approximations are ne
essary. A very importantand useful method is the so 
alled mean �eld approximation.
6.2.2 Mean �eld approximationWeiss proposed the mean �eld method in 1907. The latter 
onsists in repla
ing thein�uen
e of the neighbors by their average impa
t. Let us 
onsider one spin Si. If wewant to 
al
ulate its energy, it is possible to approximate the e�e
t of the other spins
Sj by introdu
ing their average 〈Sj〉. The problem be
omes a 
lassi
al paramagnetism
al
ulation and the intera
tion is given by:

H = −J
∑

〈i,j〉

SiSj − µB
∑

i

Si, (6.8)89



Chapter 6. Building a minimal modelwhere B is an external magneti
 �eld and µ the magneti
 moment.The energy for one spin Si is:
Ei = −JSi

∑

j

〈Sj〉 − µBSi. (6.9)In equations (6.8) and (6.9), there a supplementary term µB
∑

i Si that re�e
ts an exoge-nous e�e
t and 
ould be later set at 0 later. The mean �eld approximation is obvious in(6.9) where the sum over the neighbors has been transformed into a sum over the averagevalue 〈Sj〉. Within the mean �eld approximation, the magnetization M is:
tanh−1 M =

qJ

kT
M +

µB

kT
, (6.10)where q is the number of neighbors, whi
h depends of the dimension oh the spa
e. When Btends towards zero, the mean �eld approximation predi
ts a spontaneous magnetization:

• M = 0 if T > qJ/k

• M 6= 0 if T < qJ/kAs the parameter T is tuned, the magnetization M 
hanges from zero to a non-zero value.Thus T is thus 
alled the 
ontrol parameter be
ause a variation in T 
hanges the ma
ro-s
opi
 property of the system. The value M , whi
h indi
ates if there is magnetization, isthe order parameter.The mean �eld approa
h predi
ts a spontaneous magnetization as soon as the temper-ature T is below qJ/k. This magnetization is the sign of a 
olle
tive behavior. Indeed,at a mi
ros
opi
 s
ale, due to the lo
al intera
tions des
ribed by (6.3), the spins take
olle
tively the same value and 
reate a ma
ros
opi
 magnetization. There is a spe
ialvalue of T . This value is named the 
riti
al temperature, Tc, and is equal to qJ/k. Themean �eld theory provides important results for a temperature T 
lose to Tc.90



6.2. A minimal model for 
olle
tive behavior and statisti
al physi
s toolboxIn parti
ular, the magnetization M behaves as:
M ∼ (Tc − T )

1

2 . (6.11)The magnetization response of a material to an exogenous magneti
 �eld is 
alled thesus
eptibility and is de�ned as:
χ =

∂M

∂B

∣

∣

∣

∣

B=0

. (6.12)On both sides of Tc, the sus
eptibility χ behaves like:
χ ∼ (Tc − T )−1 , (6.13)with a di�erent 
oe�
ient a

ording to the sign of (Tc − T ). The behavior of the magne-tization M in fun
tion the external applied magneti
 �eld B is:

B ∼ M3. (6.14)The equations (6.11), (6.13), (6.14), give the behavior of some physi
al quantities 
loseto the 
riti
al temperature Tc. These behaviors are des
ribed power laws. A power lawfun
tion f(x) = xα is invariant under the res
aling x → λx be
ause:
f(x) = λ−αf(λx). (6.15)Thus, the observed phenomena 
lose to the 
riti
al temperature Tc are s
ale invariant andremain identi
al whatever the size at whi
h the system is observed. The exponents of thepower law fun
tions do not depend on details, it is the reason why details are removed torea
h a minimal model, and are named universal exponents.
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Chapter 6. Building a minimal model6.3 Some 
on
lusions and general ideas about the Isingmodel and the mean �eld approximationAs a 
on
lusion, let us brie�y summarize the two pre
eding paragraphs in order to insist,�rst on the philosophy underlying the 
onstru
tion of a minimal model, se
ond on theadvantages and drawba
ks of su
h a model.A minimal model fo
uses on some main 
hara
teristi
(s) and do not pay intention tothe details. For instan
e, the Ising model predi
ts that a transition will o

ur at a giventemperature Tc. However Tc is not universal while the transition is. We 
annot know whi
hspin is in 
harge when the magnetization appears, but the behaviors of the 
orrelationlength or some physi
al quantities des
ribed by power laws are the same for all materials.Despite the simpli
ity of minimal models, most of the time they have analyti
al solutionsand one need numeri
al investigations or approximations like the mean �eld theory. Itis a very useful method, still used and in general is a �rst step to study a new model,but must be 
onsidered 
arefully. The reason is that �u
tuations are negle
ted and if thephenomenology is driven by �u
tuations the mean �eld approa
h will not 
apture it.
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7
Con
lusion

In this report we have presented our �rst results about the study of systemi
 risk in energyderivatives markets. In the �nan
ial literature, the studies of the way sho
ks appear in�nan
ial markets and the way they disseminate among other markets generally take intoa

ount one or two of the dimensions of the integration. While the integration 
an beexamined a

ording three dimensions, spa
e, observation time and maturity, we have beennaturally lead to the following question: �Why not trying to study the three dimensionssimultaneously?�. On that purpose, we apply re
ent methods from statisti
al physi
s.We �rst present the energy markets sele
ted for our empiri
al study: three 
rude oil,two heating oil and natural gas markets. We then expose the main 
hara
teristi
s of thedatabase and present some futures pri
es behavior on our study period. We �nally dis
ussthe seasonal behavior of the 
ommodities under 
onsideration.We then propose a method allowing us to empiri
ally measure the integration of the mar-kets. This method is a �ltering pro
edure whi
h transforms a 
orrelation matrix into adistan
e matrix in order to 
ompute a parti
ular graph, the minimum spanning tree. Thelatter provides the shortest path linking together all the nodes of the graph.We apply this method to our data and realize two series of empiri
al tests, on the ma-turity as well as on the spatial dimensions. These results re�e
t the presen
e of the93



Chapter 7. Con
lusionSamuelson e�e
t asso
iated with a linear organization of the graph, from the �rst to thelast maturities. We performe an analysis of the spatial integration for �ve markets ondi�erent maturities. It happens that the topology of the resulting graphs 
hanges withthe maturity under 
onsideration. In ea
h 
ase, the links between markets, through therepresentation of the minimum spanning tree, have an e
onomi
al interpretation that sat-is�es the intuition. Comparing the results for di�erent maturities, we have found that thestrength of the integration in
reases with the maturity. The latter result is original andhas not been yet mentioned in other works.We then study the question of systemi
 risk in energy derivative markets based on two
hoi
es. First we fo
us on market integration, as it 
an be seen as a ne
essary 
onditionfor the propagation of a pri
es sho
k. More spe
i�
ally, we fo
us on the simultaneous
orrelations of pri
e returns. Se
ondly, based on the fa
t that previous studies mainlyfo
used solely on the spatio-temporal dimension of integration, we introdu
e a maturitydimension analysis and we perform a three-dimensional analysis.The visualization of the MST �rst shows a star-like organization of the trees in the spatialdimension, whereas the maturity dimension is 
hara
terized by 
hain-like trees. These twotopologies merge in the three-dimensional analysis, but the star-like organization still dom-inates. The star-like organization reprodu
es the three di�erent se
tors studied: energy,agri
ulture and �nan
e, and the 
hain-like stru
ture re�e
ts the presen
e of a Samuelsone�e
t. These intuitive results are very important, as they are a key justi�
ation for theuse of our methodology.The Ameri
an and European 
rude oils are both found at the 
enter of the graph andensure the links with agri
ultural produ
ts and �nan
ial assets. Thus the �rst 
on
lusionof importan
e that we 
ome to is that 
rude oil is the best 
andidate for the transmissionof pri
es sho
ks. If su
h a sho
k appears at the periphery of the graph, unless it is ab-sorbed qui
kly, it will ne
essarily pass through 
rude oil before spreading to other energyprodu
ts and se
tors. Moreover, a sho
k will have an impa
t on the whole system that94



will be all the greater the 
loser it is to the heart of the system.Another important 
on
lusion is that the level of integration is more important in thematurity dimension than in the spatial one. On
e again, this result is intuitive: arbitrageoperations are far easier with standardized futures 
ontra
ts written on the same under-lying asset than with produ
ts of di�erent natures su
h as 
orn bushels and interest rates.The analysis of how this level evolves over time shows that integration in
reases signi�-
antly on both the spatial and maturity dimensions. Su
h an in
rease 
an be observed onthe whole pri
es system. It is even more evident in the energy se
tor (with the ex
eptionof the Ameri
an and European natural gas markets) as well as in the agri
ultural se
tor.The latter is highly integrated at the end of our period. Lastly, as far as the �nan
ialse
tor is 
on
erned, no remarkable trend 
an be highlighted. Thus, as time goes on, theheart of the pri
e system be
omes stronger whereas where the peripheral assets are founddoes not 
hange signi�
antly.Last but not least, the dynami
 analysis also reveals, by using survival ratios, that thesystem is fairly stable. This is true, ex
ept for spe
i�
 events leading to important re
on-�gurations of the trees and requiring a spe
i�
 analysis. We leave these studies for futureanalyses.Su
h results have very important 
onsequen
es, for regulatory as well as for hedging anddiversi�
ation purposes. The move towards integration started some time ago and thereis probably no way to stop or refrain it. However, knowledge of its 
hara
teristi
s isimportant, as regulation authorities may a
t in order to prevent pri
es sho
ks from o

ur-ring, espe
ially in pla
es where their impa
t may be important. As far as diversi�
ationis 
on
erned, portfolio managers should probably fo
us on the less stable parts of thegraph. The links in the trees whi
h 
hange the most should be the best 
andidates fordiversi�
ation opportunities. Lastly, one important 
on
ern for hedging is the informa-tion 
onveyed by futures pri
es and its meaning. The in
reasing integration of derivativemarkets is probably not a problem for hedging purposes, unless a pri
es sho
k appears95



Chapter 7. Con
lusionsomewhere in the system. In su
h a 
ase, the information related to the transmission pathof the sho
k is important, as pri
es might temporarily be
ome irrelevant.The last part of the report is devoted to a theoreti
al work fo
using on the way a minimalmodel 
ould be built. We �nally intend to 
arry on our investigations in the followingdire
tions:We will �rst expand our empiri
al analysis in the maturity dimension. We observed someregular and re
urent 
orrelation patterns in the maturity dimension that need deeper in-vestigations and might re�e
t some universal me
hanisisms of pri
e's 
urve segmentation.The latter result would rise the interest of both 
ommunities, �nan
e and physi
s, whilstup to now the litterature mainly missed this important feature.We also aim to enri
h our results with an analysis of the transa
tion volumes and theopen interests. First we 
ould use the same graph theory formalism in order to analysetrees of 
orrelated transa
tions and open interests. We 
ould then try to 
onsider returns�u
tuations weighted by volumes and/or open interests. Thus, su
h questions as the ro-bustness of the 
entrality of 
rude oil with respe
t to interest rates will be adressed.Another �eld of empiri
al investigation will be the study of sho
ks a�e
ting the markets.In parti
ular we 
ould determine the topologi
al properties of trees during strong events,as the nature of the a�e
ted links or the time required to go ba
k to initial 
on�guration.The main part of our further studies will be devoted to modeling the 
olle
tive behavior ofderivatives energy markets and systemi
 risk. We aim to use theoriti
al 
on
epts inspiredby statisti
al physi
s, espa
ially the use of minimum model. Our former results will leadus to establish fundamental hypothesis and play the role of guideline in the developmentof the model. In parti
ular we want to determine in a single framework the me
hanismsof pri
e's term stru
ture (whi
h lead to linear tree), as the intera
tions between markets(whi
h lead to star-like tree). On
e the two typi
al shapes will be a
hieved, we will beable to use the model in order to understand the 
omplex pro
ess of bran
hing that ap-peared while the three dimensions of integration, namely where in their pri
e's 
urves two96



di�erent derivatives markets are most 
orrelated. A major 
ontribution of this part of themodelling will be to understand how (and where) links appear between markets. Se
ondly,we will pro
eed to a sho
k analysis and 
onsider su
h questions as the existen
e of tree'sshape that help or prevent to strong sho
ks, the required number of markets involved inan event to propagate it, or the amplitude of sho
ks that 
an involved in systemi
 risk.
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